Review
BibTex RIS Cite
Year 2018, Volume: 2 Issue: 1, 42 - 61, 25.03.2018
https://doi.org/10.31197/atnaa.407069

Abstract

References

  • R.P. Agarwal, D. O’Regan, D.R. Sahu, Fixed Point Theory for Lipschitzian-type Mappings withApplications, Series Topological Fixed Point Theory and Its Applications, Springer, New York,2009;
  • Aoyama K, Iemoto S, Kohsaka F, W. Takahashi, Fixed point and ergodic theorems for $\lambda$-hybrid mappingsin Hilbert spaces, J. Nonlinear Convex Anal. 2010;11:335–343;
  • M.A. Alghamdi, M.A. Alghamdi, N. Shahzad, H.K. Xu, The implicit midpoint rule for nonexpansive mappings, Fixed PointTheory Appl. 2014, 96 (2014);
  • E. Asplund, Positivity of duality mappings, Bull. Amer. Math. Soc, 73 (1967), 200-203;
  • S. Banach, Sur les op\'erations dans les ensembles abstraits et leur application aux \'equations integrals , Fundamenta Mathematicae, (1922);
  • V. Berinde, Iterative Approximation of Fixed Points, second ed., in: Lecture Notes in Mathematics, vol. 1912, Springer, Berlin, 2007;
  • A. Beurling and A. E. Livingston, A theorem on duality mappings in Banach spaces, Ark. Mat. 4 (1961), 405-411;
  • F. E. Browder, Nonexpansive nonlinear operators in a Banach space, Proc. Nat. Acad. Sci. U.S.A., 54 (1965),1041–1044;
  • F.E. Browder, Fixed point theorems for nonlinear semicontractive mappings in Banach paces, Arch. Rational Mech. Anal. 21 (1966), 259-269;
  • Browder, F.E., Convergence of approximants to fixed points of nonexpansivenonlinear maps in Banach spaces, Arch. Rat. Mech. Anal., 24,82-90 (1967);
  • F. E. Browder, Nonlinear mappings of nonexpansive and accretive type in Banach spaces, Bull. Amer.Math. Soc. 73 (1967), 875-882;
  • F.E. Browder, Semicontractive and semiaccretive nonlinear mappings in Banach spaces, Bull. Amer. Math. Soc. 74 (1968), 660-665;
  • F. E. Browder and W. V. Petryshyn, The solution by iteration of nonlinear functional equations in Banach spaces, Bull. Amer. Math. Sot. 72 (1966), 571-575.;
  • F. E. Browder and W. V. Petryshyn, Construction of fixed points of nonlinear mappings in Hilbert spaces, J. Math. Anal. Appl. 20 (1967), 197-228;
  • R. E. Bruck, Asymptotic behavior of nonexpansive mappings, Contemporary Math. 18 (1983), 1-47;
  • C. Byrne, A unified treatment of some iterative algorithms in signal processing andimage reconstruction, Inverse Problems, 20 (2004), 103-120;
  • Carnahan, B.; Luther, A. H.; and Wilkes, J., Applied NumericalMethods, John Wiley and Sons, New York, 1969;
  • C. Chidume, Geometric Properties of Banach Spaces and Nonlinear Iterations, vol. 1965 of Lecture Notes in Mathematics, Springer, London, UK, 2009;
  • C. E. Chidume and C. O. Chidume, Iterative approximation offixed points of nonexpansive mappings, Journal of MathematicalAnalysis and Applications, vol. 318, no. 1, pp. 288-295, 2006;
  • Chidume, C.E., Mutangadura, S.A., An example on the Mann iteration method for Lipschitz pseudocontractions, Proc. Amer. Math. Soc., 129,No. 8, 2359-2363 (2001);
  • F. Cianciaruso, G. Marino, A. Rugiano, B. Scardamaglia, On strong convergence of viscosity type method usingaveraged type mappings, J. Nonlinear Convex Anal., {\bf 16} (2015), 1619-1640;
  • I. Cioranescu, Geometry of Banach Spaces, Duality Mappings and Nonlinear Problems, Kluwer, Dordrecht, 1990;
  • Deimling, K., Zeros of accretive operators, Manuscripta Math., 13, 365-374 (1974);
  • F. Deutsch, I. Yamada, Minimizing certain convex functions over the intersection of the fixed point sets ofnonexpansive mappings, Numer. Funct. Anal. Optim. 19 (1998) 33–56;
  • J. B. Diaz and F. T. Metcalf, On the set of subsequential limit points of successiveapproximations, Trans. Amer. Math. Soc. 135 (1969), 459-485;
  • W.G. Dotson, On the Mann iterative process, Trans. Amer. Math. Soc. 149 (1970)65-73;
  • W. G. Dotson, Jr., Fixed points of quasi-nonexpansive mappings, J. Austral. Math.Soc. 13 (1972), 167-170;
  • M. Edelstein, A remark on a theorem of M. A. Krasnoselski, Amer. Math. Monthly 73 (1966),509-510;
  • R. L. Franks and R. P. Marzec, A theorem on mean value iterations, Proc. Amer.Math. Soc. 30 (1971), 324-326;
  • J.Garcia-Falset, W. Kaczor, T. Kuczumow, S. Reich, Weak convergence theorems for asymptotically nonexpansivemappings and semigroups, Nonlinear Anal., {\bf 43} (2001) 377-401;
  • J. Garcia-Falset, Existence of fixed points for the sum of two operators, Math. Nachr. 283 (12) (2010) 1726-1757;
  • Garcia-Falset, K. Latrach, E. Moreno-Gálvez, M. A Taoudi, Shaefer–Krasnoselskii fixed points theorems using a usual measure of weaknoncompactness, J. Diff. Equ. 352 (2012) 3436-3452;
  • J. Garcia-Falset, O. Muniz-Perez, Fixed point theory for 1-set contractive and pseudocontractive mappings, Applied Mathematics and Computation, 219 (2013), 6843-6855;
  • J. Garcia-Falset, G. Marino, R. Zaccone, An explicit midpoint algorithm in Banach spaces, to appear in J. Nonlinear and Convex Anal. (2017);
  • A. Genel and J. Lindenstrauss, An example concerning fixed points, Israel J. Math., 22 (1975), 81-86;
  • M.K. Ghosh, L. Debnath, Convergence of Ishikawa iterates of quasi-nonexpansive mappings, J. Math. Anal. Appl. 207 (1997) 96-103;
  • D. Gohde, Zum Prinzip der kontraktiven Abbildung, (German) Math. Nachr., 30 (1965), 251–258;
  • K. Goebel, W.A. Kirk, Topics in Metric Fixed Point Theory, Cambridge Stud. Adv. Math., vol. 28, Cambridge Univ. Press, 1990;
  • B. Halpern, Fixed points of nonexpanding maps, Bull. Amer. Math. Soc.73 (1967), 957-961;
  • S. He, C. Yang , Solving the variational inequality problem defined on intersection of finite level sets, Abstr. Appl. Anal. Vol. 2013 (2013), Article ID 942315, 8 pages;
  • Z. He, W-S Du, Nonlinear algorithms approach to split common solution problems, Fixed Point Theory Appl. 2012,Article ID 130 (2012);
  • Hicks, T.L., Kubicek, J.R., On the Mann iteration process in Hilbertspace, J. Math. Anal. Appl., 59, 498-504 (1977);
  • N. Hussain, G. Marino, L. Muglia, L. Alamri, On some Mann's type iterative algorithms, Fixed Point Theory Appl 2015 (2015), Article ID 17;
  • S. Iemoto and W. Takahashi, Approximating common fixed points of nonexpansive mappingsand nonspreading mappings in a Hilbert space, Nonlinear Anal., 71 (2009), 2082-2089;
  • Ishikawa, S., Fixed points and iterations of a nonexpansive mapping in a Banachspace, Proc. Amer. Math. Soc. 59, pp. 65-71 (1976);
  • S. Ishikawa, Fixed points by a new iteration method, Proc. Amer. Math. Soc. 44 (1974) 147–150;
  • J.S. Jung, Iterative approaches to common fixed points of nonexpansive mappings in Banach spaces, J. Math. Anal. Appl. 302 (2005) 509-520;
  • Y. Ke. C. Ma, The generalized viscosity implicit rules of nonexpansive mappings in Hilbert spaces, Fixed Point Theory Appl. 2015, 190 (2015), 21 pages;
  • T.H. Kim, H.K. Xu, Strong convergence of modified Mann iterations, Nonlinear Anal., {\bf 61} (2005) 51-60;
  • W. A. Kirk, A fixed point theorem for mappings which do not increase distance,Amer. Math. Monthly 72 (1965), 1004-1006;
  • F. Kohsaka, W. Takahashi, Fixed point theorems for a class of nonlinear mappings related to maximal monotone operators in Banach spaces, Archiv der Mathematik, vol. 91, no. 2, pp. 166-177, 2008;
  • M. A. Krasnoselskii, Two observations about the method of successive approximations,Usp. Math. Nauk. 10(1955), 123-127;
  • K. Latrach, M. Aziz Taoudi, A. Zeghal, Some fixed point theorems of Schauder and the Krasnosel’skii type and application to nonlinear transportequations, J. Diff. Equ. 221 (2006) 256-271;
  • Lions, P.-L., Approximation de points fixes de contractions, C.R. Acad.Sci. Ser. A-B Paris, 284, 1357-1359 (1977);
  • P.E. Maing\'e Strong convergence of projected subgradient methods for nonsmooth and nonstrictlyconvex minimization, Set-Valued Anal. 16 (2008), 899-912;
  • P-E. Mainge, The viscosity approximation process for quasi-nonexpansive mappings in Hilbert ´spaces, Computers and Mathematics with Applications, vol. 59, no. 1, pp. 74–79, 2010;
  • W.R. Mann, Mean value methods in iteration, Proc. Amer. Math. Soc. 4 (1953) 506-510;
  • G. Marino, H.K. Xu, A general iterative method for nonexpansive mappings in Hilbert spaces, J. Math. Anal. Appl. 318 (1) (2006) 43-52;
  • G. Marino, B. Scardamaglia, R. Zaccone, A general viscosity explicit midpoint rule for quasi-nonexpansive mappings, J. Nonlinear and Convex Anal., vol. 18, n. 1 (2017), 137-148;
  • G. Marino, R. Zaccone, On strong convergence of some midpoint type methods for nonexpansive mappings, J. Nonlinear Var. Anal., vol. 1 (2017), n. 2, 159-174;
  • C. Martinez-Yanes, H.K. Xu, Strong convergence of the CQ method for fixed point iteration processes, Nonlinear Anal. 64 (2006) 2400-2411;
  • D. P. Milman, On some criteria for the regularity of spaces of the type (B)} (Russian), Dokl. Akad. Nauk SSSR 20 (1938);
  • A. Moudafi, \emph{Viscosity approximation methods for fixed-points problems, J. Math. Anal. Appl. 241 (2000),46-55;
  • K. Nakajo, W. Takahashi, Strong convergence theorems for nonexpansive mappings and nonexpansive semigroups,J. Math. Anal. Appl., {\bf 279} (2003), 372-379;
  • J.G. O'Hara, P. Pillay, H.K. Xu, Iterative approaches to finding nearest common fixed points of nonexpansivemappings in Hilbert spaces, Nonlinear Anal., {\bf 54} (2003), 1417-1426;
  • E. Hairer, S. P. N\o rsett and G. Wanner, Solving Ordinary Differential EquationsI: Nonstiff Problems, Springer Series in Computational Mathematics, 2nd edn.(Springer-Verlag, 1993);
  • Z. Opial, Weak convergence of the sequence of successive approximations fornonexpansive mappings, Bull. Amer. Math. Sot. 73 (1967), 591-597;
  • J.G. O'Hara, P. Pillay, H.K. Xu, Iterative approaches to finding nearest common fixed points of nonexpansivemappings in Hilbert spaces, Nonlinear Anal. 54 (2003) 1417-1426;
  • W. V. Petryshyn, Construction of fixed points of demicompact mappings inHilbert space, Math. Anal. Appl. 14 (1966), 276-284;
  • B. J. Pettis, A proof that every uniformly convex space is reflexive, Duke Math. J. 5 (1939), no. 2, 249--253;
  • S. Reich, Asymptotic behavior of contractions in Banach spaces, J. Math. Anal. Appl. 44 (1973) 57-70;
  • S. Reich, Weak convergence theorems for nonexpansive mappings in Banach spaces, J. Math. Anal. Appl. 67 (1979), 274-276;
  • S. Reich, A limit theorem for projections, Linear and Multilinear Algebra, vol. 13, no. 3, pp. 281–290,1983;
  • S. Reich, Strong convergence theorems for resolvents of accretive operators in Banach spaces, J. Math. Anal.Appl. 75 (1980) 287-292;
  • H. Schaefer, Uber die Methode sukzessive Approximationen, Jahre Deutsch Math.Verein 59(1957), 131-40;
  • N. Shioji and W. Takahashi, Strong convergence of approximatedsequences for nonexpansive mappings in Banach spaces, Proc. Amer.Math. Soc., 125(12) (1997), 3641-3645;
  • Y. Song and X. Chai, Halpern iteration for firmly type nonexpansivemappings, Nonlinear Analysis: Theory, Methods And Applications, vol. 71, no. 10, pp. 4500-4506, 2009;
  • Y. Song, R. Chen, Viscosity approximation methods for nonexpansive nonself-mappings, J. Math. Anal. Appl. 321 (2006) 316-326;
  • T. Suzuki, A sufficient and necessary condition for Halpern-type strong convergence to fixed points of nonexpansive mappings,Proceedings of the American Mathematical Society, vol.135, no. 1, pp. 99-106, 2007;
  • M.A. Taoudi, N. Salhi, B. Ghribi, Integrable solutions of a mixed type operator equation, Appl. Math. Comput. 216 (2010) 1150-1157;
  • M. Tian, A general iterative algorithm for nonexpansive mappings in Hilbert spaces, Nonlinear Anal. 73 (2010) 689-694;
  • F. Tricomi, Un teorema sulla convergenza delle successioni formate delle successive iterate diuna funzione di una variabile reale, Giorn. Mat. Battaglini 54 (1916), 1-9;
  • W. V. Petryshyn and T. E. Williamson, Strong and weak convergence of the sequence ofsuccessive approximations for quasi-nonexpansive mappings, J. Math. Anal. Appl. 43Ž . 1973 , 459-497;
  • Wittmann, R., Approximation of fixed points of nonexpansive mappings, Arch. Math., 58, 486-491 (1992);
  • Wongchan, K, Saejung, S, On the strong convergence of viscosity approximation process for quasinonexpansivemappings in Hilbert spaces, Abstr. Appl. Anal. 2011;
  • H. K. Xu, \emph{Inequalities in Banach spaces with applications, Nonlinear Anal., 16 (1991),pp. 1127-1138;
  • H.K. Xu, Iterative algorithms for nonlinear operators}, J. London Math. Soc. 66 (2002), 240-256;
  • H.-K. Xu, Another control condition in an iterative method for nonexpansive mappings, Bull. Austral. Math. Soc. 65 (2002), 109-113;
  • H.K. Xu, Viscosity approximation methods for nonexpansive mappings, J. Math. Anal. Appl. 298 (2004) 279–291;
  • H. K. Xu, T. H. Kim, X. Yin, Weak continuity of the normalized duality map, Journal of Nonlinear and Convex Analysis, Vol. 15, no 3, 2014, 595-604;
  • H. K. Xu, M. A. Alghamdi, N. Shahzad, The viscosity technique for the implicit midpoint rule of nonexpansive mappingsin Hilbert spaces, Fixed Point Theory Appl. 41 (2015), 12 pages;
  • C. Yang, S. He, Convergence of explicit iterative algorithms for solving a class of variational inequalities, Wseas Trans. Math., (2014), 830-839;
  • H. Zhou, Convergence theorems of common fixed points for a finite family of Lipschitz pseudocontractionsin Banach spaces, Nonlinear Analysis, 68 (2008), 2977-2983;
  • H.Y. Zhou, P.Y. Wang, A simpler explicit iterative algorithm for a class of variational inequalities in Hilbert spaces, J. Optim. Theory Appl. 161 (2014), 716-727.

On some midpoint-type algorithms.

Year 2018, Volume: 2 Issue: 1, 42 - 61, 25.03.2018
https://doi.org/10.31197/atnaa.407069

Abstract

We introduce iterative methods approximating fixed points for nonlinear operators defined on infinite-dimensional spaces. The starting points are the Implicit and Explicit Midpoint Rules, which generate polygonal functions approximating a solution for an ordinary differential equation infinite-dimensional spaces.



The purpose is to determine suitable conditions on the mapping and the underlying space, in order to get strong convergence of the generated sequence to a common solution of a fixed point problem and a variational inequality. 

References

  • R.P. Agarwal, D. O’Regan, D.R. Sahu, Fixed Point Theory for Lipschitzian-type Mappings withApplications, Series Topological Fixed Point Theory and Its Applications, Springer, New York,2009;
  • Aoyama K, Iemoto S, Kohsaka F, W. Takahashi, Fixed point and ergodic theorems for $\lambda$-hybrid mappingsin Hilbert spaces, J. Nonlinear Convex Anal. 2010;11:335–343;
  • M.A. Alghamdi, M.A. Alghamdi, N. Shahzad, H.K. Xu, The implicit midpoint rule for nonexpansive mappings, Fixed PointTheory Appl. 2014, 96 (2014);
  • E. Asplund, Positivity of duality mappings, Bull. Amer. Math. Soc, 73 (1967), 200-203;
  • S. Banach, Sur les op\'erations dans les ensembles abstraits et leur application aux \'equations integrals , Fundamenta Mathematicae, (1922);
  • V. Berinde, Iterative Approximation of Fixed Points, second ed., in: Lecture Notes in Mathematics, vol. 1912, Springer, Berlin, 2007;
  • A. Beurling and A. E. Livingston, A theorem on duality mappings in Banach spaces, Ark. Mat. 4 (1961), 405-411;
  • F. E. Browder, Nonexpansive nonlinear operators in a Banach space, Proc. Nat. Acad. Sci. U.S.A., 54 (1965),1041–1044;
  • F.E. Browder, Fixed point theorems for nonlinear semicontractive mappings in Banach paces, Arch. Rational Mech. Anal. 21 (1966), 259-269;
  • Browder, F.E., Convergence of approximants to fixed points of nonexpansivenonlinear maps in Banach spaces, Arch. Rat. Mech. Anal., 24,82-90 (1967);
  • F. E. Browder, Nonlinear mappings of nonexpansive and accretive type in Banach spaces, Bull. Amer.Math. Soc. 73 (1967), 875-882;
  • F.E. Browder, Semicontractive and semiaccretive nonlinear mappings in Banach spaces, Bull. Amer. Math. Soc. 74 (1968), 660-665;
  • F. E. Browder and W. V. Petryshyn, The solution by iteration of nonlinear functional equations in Banach spaces, Bull. Amer. Math. Sot. 72 (1966), 571-575.;
  • F. E. Browder and W. V. Petryshyn, Construction of fixed points of nonlinear mappings in Hilbert spaces, J. Math. Anal. Appl. 20 (1967), 197-228;
  • R. E. Bruck, Asymptotic behavior of nonexpansive mappings, Contemporary Math. 18 (1983), 1-47;
  • C. Byrne, A unified treatment of some iterative algorithms in signal processing andimage reconstruction, Inverse Problems, 20 (2004), 103-120;
  • Carnahan, B.; Luther, A. H.; and Wilkes, J., Applied NumericalMethods, John Wiley and Sons, New York, 1969;
  • C. Chidume, Geometric Properties of Banach Spaces and Nonlinear Iterations, vol. 1965 of Lecture Notes in Mathematics, Springer, London, UK, 2009;
  • C. E. Chidume and C. O. Chidume, Iterative approximation offixed points of nonexpansive mappings, Journal of MathematicalAnalysis and Applications, vol. 318, no. 1, pp. 288-295, 2006;
  • Chidume, C.E., Mutangadura, S.A., An example on the Mann iteration method for Lipschitz pseudocontractions, Proc. Amer. Math. Soc., 129,No. 8, 2359-2363 (2001);
  • F. Cianciaruso, G. Marino, A. Rugiano, B. Scardamaglia, On strong convergence of viscosity type method usingaveraged type mappings, J. Nonlinear Convex Anal., {\bf 16} (2015), 1619-1640;
  • I. Cioranescu, Geometry of Banach Spaces, Duality Mappings and Nonlinear Problems, Kluwer, Dordrecht, 1990;
  • Deimling, K., Zeros of accretive operators, Manuscripta Math., 13, 365-374 (1974);
  • F. Deutsch, I. Yamada, Minimizing certain convex functions over the intersection of the fixed point sets ofnonexpansive mappings, Numer. Funct. Anal. Optim. 19 (1998) 33–56;
  • J. B. Diaz and F. T. Metcalf, On the set of subsequential limit points of successiveapproximations, Trans. Amer. Math. Soc. 135 (1969), 459-485;
  • W.G. Dotson, On the Mann iterative process, Trans. Amer. Math. Soc. 149 (1970)65-73;
  • W. G. Dotson, Jr., Fixed points of quasi-nonexpansive mappings, J. Austral. Math.Soc. 13 (1972), 167-170;
  • M. Edelstein, A remark on a theorem of M. A. Krasnoselski, Amer. Math. Monthly 73 (1966),509-510;
  • R. L. Franks and R. P. Marzec, A theorem on mean value iterations, Proc. Amer.Math. Soc. 30 (1971), 324-326;
  • J.Garcia-Falset, W. Kaczor, T. Kuczumow, S. Reich, Weak convergence theorems for asymptotically nonexpansivemappings and semigroups, Nonlinear Anal., {\bf 43} (2001) 377-401;
  • J. Garcia-Falset, Existence of fixed points for the sum of two operators, Math. Nachr. 283 (12) (2010) 1726-1757;
  • Garcia-Falset, K. Latrach, E. Moreno-Gálvez, M. A Taoudi, Shaefer–Krasnoselskii fixed points theorems using a usual measure of weaknoncompactness, J. Diff. Equ. 352 (2012) 3436-3452;
  • J. Garcia-Falset, O. Muniz-Perez, Fixed point theory for 1-set contractive and pseudocontractive mappings, Applied Mathematics and Computation, 219 (2013), 6843-6855;
  • J. Garcia-Falset, G. Marino, R. Zaccone, An explicit midpoint algorithm in Banach spaces, to appear in J. Nonlinear and Convex Anal. (2017);
  • A. Genel and J. Lindenstrauss, An example concerning fixed points, Israel J. Math., 22 (1975), 81-86;
  • M.K. Ghosh, L. Debnath, Convergence of Ishikawa iterates of quasi-nonexpansive mappings, J. Math. Anal. Appl. 207 (1997) 96-103;
  • D. Gohde, Zum Prinzip der kontraktiven Abbildung, (German) Math. Nachr., 30 (1965), 251–258;
  • K. Goebel, W.A. Kirk, Topics in Metric Fixed Point Theory, Cambridge Stud. Adv. Math., vol. 28, Cambridge Univ. Press, 1990;
  • B. Halpern, Fixed points of nonexpanding maps, Bull. Amer. Math. Soc.73 (1967), 957-961;
  • S. He, C. Yang , Solving the variational inequality problem defined on intersection of finite level sets, Abstr. Appl. Anal. Vol. 2013 (2013), Article ID 942315, 8 pages;
  • Z. He, W-S Du, Nonlinear algorithms approach to split common solution problems, Fixed Point Theory Appl. 2012,Article ID 130 (2012);
  • Hicks, T.L., Kubicek, J.R., On the Mann iteration process in Hilbertspace, J. Math. Anal. Appl., 59, 498-504 (1977);
  • N. Hussain, G. Marino, L. Muglia, L. Alamri, On some Mann's type iterative algorithms, Fixed Point Theory Appl 2015 (2015), Article ID 17;
  • S. Iemoto and W. Takahashi, Approximating common fixed points of nonexpansive mappingsand nonspreading mappings in a Hilbert space, Nonlinear Anal., 71 (2009), 2082-2089;
  • Ishikawa, S., Fixed points and iterations of a nonexpansive mapping in a Banachspace, Proc. Amer. Math. Soc. 59, pp. 65-71 (1976);
  • S. Ishikawa, Fixed points by a new iteration method, Proc. Amer. Math. Soc. 44 (1974) 147–150;
  • J.S. Jung, Iterative approaches to common fixed points of nonexpansive mappings in Banach spaces, J. Math. Anal. Appl. 302 (2005) 509-520;
  • Y. Ke. C. Ma, The generalized viscosity implicit rules of nonexpansive mappings in Hilbert spaces, Fixed Point Theory Appl. 2015, 190 (2015), 21 pages;
  • T.H. Kim, H.K. Xu, Strong convergence of modified Mann iterations, Nonlinear Anal., {\bf 61} (2005) 51-60;
  • W. A. Kirk, A fixed point theorem for mappings which do not increase distance,Amer. Math. Monthly 72 (1965), 1004-1006;
  • F. Kohsaka, W. Takahashi, Fixed point theorems for a class of nonlinear mappings related to maximal monotone operators in Banach spaces, Archiv der Mathematik, vol. 91, no. 2, pp. 166-177, 2008;
  • M. A. Krasnoselskii, Two observations about the method of successive approximations,Usp. Math. Nauk. 10(1955), 123-127;
  • K. Latrach, M. Aziz Taoudi, A. Zeghal, Some fixed point theorems of Schauder and the Krasnosel’skii type and application to nonlinear transportequations, J. Diff. Equ. 221 (2006) 256-271;
  • Lions, P.-L., Approximation de points fixes de contractions, C.R. Acad.Sci. Ser. A-B Paris, 284, 1357-1359 (1977);
  • P.E. Maing\'e Strong convergence of projected subgradient methods for nonsmooth and nonstrictlyconvex minimization, Set-Valued Anal. 16 (2008), 899-912;
  • P-E. Mainge, The viscosity approximation process for quasi-nonexpansive mappings in Hilbert ´spaces, Computers and Mathematics with Applications, vol. 59, no. 1, pp. 74–79, 2010;
  • W.R. Mann, Mean value methods in iteration, Proc. Amer. Math. Soc. 4 (1953) 506-510;
  • G. Marino, H.K. Xu, A general iterative method for nonexpansive mappings in Hilbert spaces, J. Math. Anal. Appl. 318 (1) (2006) 43-52;
  • G. Marino, B. Scardamaglia, R. Zaccone, A general viscosity explicit midpoint rule for quasi-nonexpansive mappings, J. Nonlinear and Convex Anal., vol. 18, n. 1 (2017), 137-148;
  • G. Marino, R. Zaccone, On strong convergence of some midpoint type methods for nonexpansive mappings, J. Nonlinear Var. Anal., vol. 1 (2017), n. 2, 159-174;
  • C. Martinez-Yanes, H.K. Xu, Strong convergence of the CQ method for fixed point iteration processes, Nonlinear Anal. 64 (2006) 2400-2411;
  • D. P. Milman, On some criteria for the regularity of spaces of the type (B)} (Russian), Dokl. Akad. Nauk SSSR 20 (1938);
  • A. Moudafi, \emph{Viscosity approximation methods for fixed-points problems, J. Math. Anal. Appl. 241 (2000),46-55;
  • K. Nakajo, W. Takahashi, Strong convergence theorems for nonexpansive mappings and nonexpansive semigroups,J. Math. Anal. Appl., {\bf 279} (2003), 372-379;
  • J.G. O'Hara, P. Pillay, H.K. Xu, Iterative approaches to finding nearest common fixed points of nonexpansivemappings in Hilbert spaces, Nonlinear Anal., {\bf 54} (2003), 1417-1426;
  • E. Hairer, S. P. N\o rsett and G. Wanner, Solving Ordinary Differential EquationsI: Nonstiff Problems, Springer Series in Computational Mathematics, 2nd edn.(Springer-Verlag, 1993);
  • Z. Opial, Weak convergence of the sequence of successive approximations fornonexpansive mappings, Bull. Amer. Math. Sot. 73 (1967), 591-597;
  • J.G. O'Hara, P. Pillay, H.K. Xu, Iterative approaches to finding nearest common fixed points of nonexpansivemappings in Hilbert spaces, Nonlinear Anal. 54 (2003) 1417-1426;
  • W. V. Petryshyn, Construction of fixed points of demicompact mappings inHilbert space, Math. Anal. Appl. 14 (1966), 276-284;
  • B. J. Pettis, A proof that every uniformly convex space is reflexive, Duke Math. J. 5 (1939), no. 2, 249--253;
  • S. Reich, Asymptotic behavior of contractions in Banach spaces, J. Math. Anal. Appl. 44 (1973) 57-70;
  • S. Reich, Weak convergence theorems for nonexpansive mappings in Banach spaces, J. Math. Anal. Appl. 67 (1979), 274-276;
  • S. Reich, A limit theorem for projections, Linear and Multilinear Algebra, vol. 13, no. 3, pp. 281–290,1983;
  • S. Reich, Strong convergence theorems for resolvents of accretive operators in Banach spaces, J. Math. Anal.Appl. 75 (1980) 287-292;
  • H. Schaefer, Uber die Methode sukzessive Approximationen, Jahre Deutsch Math.Verein 59(1957), 131-40;
  • N. Shioji and W. Takahashi, Strong convergence of approximatedsequences for nonexpansive mappings in Banach spaces, Proc. Amer.Math. Soc., 125(12) (1997), 3641-3645;
  • Y. Song and X. Chai, Halpern iteration for firmly type nonexpansivemappings, Nonlinear Analysis: Theory, Methods And Applications, vol. 71, no. 10, pp. 4500-4506, 2009;
  • Y. Song, R. Chen, Viscosity approximation methods for nonexpansive nonself-mappings, J. Math. Anal. Appl. 321 (2006) 316-326;
  • T. Suzuki, A sufficient and necessary condition for Halpern-type strong convergence to fixed points of nonexpansive mappings,Proceedings of the American Mathematical Society, vol.135, no. 1, pp. 99-106, 2007;
  • M.A. Taoudi, N. Salhi, B. Ghribi, Integrable solutions of a mixed type operator equation, Appl. Math. Comput. 216 (2010) 1150-1157;
  • M. Tian, A general iterative algorithm for nonexpansive mappings in Hilbert spaces, Nonlinear Anal. 73 (2010) 689-694;
  • F. Tricomi, Un teorema sulla convergenza delle successioni formate delle successive iterate diuna funzione di una variabile reale, Giorn. Mat. Battaglini 54 (1916), 1-9;
  • W. V. Petryshyn and T. E. Williamson, Strong and weak convergence of the sequence ofsuccessive approximations for quasi-nonexpansive mappings, J. Math. Anal. Appl. 43Ž . 1973 , 459-497;
  • Wittmann, R., Approximation of fixed points of nonexpansive mappings, Arch. Math., 58, 486-491 (1992);
  • Wongchan, K, Saejung, S, On the strong convergence of viscosity approximation process for quasinonexpansivemappings in Hilbert spaces, Abstr. Appl. Anal. 2011;
  • H. K. Xu, \emph{Inequalities in Banach spaces with applications, Nonlinear Anal., 16 (1991),pp. 1127-1138;
  • H.K. Xu, Iterative algorithms for nonlinear operators}, J. London Math. Soc. 66 (2002), 240-256;
  • H.-K. Xu, Another control condition in an iterative method for nonexpansive mappings, Bull. Austral. Math. Soc. 65 (2002), 109-113;
  • H.K. Xu, Viscosity approximation methods for nonexpansive mappings, J. Math. Anal. Appl. 298 (2004) 279–291;
  • H. K. Xu, T. H. Kim, X. Yin, Weak continuity of the normalized duality map, Journal of Nonlinear and Convex Analysis, Vol. 15, no 3, 2014, 595-604;
  • H. K. Xu, M. A. Alghamdi, N. Shahzad, The viscosity technique for the implicit midpoint rule of nonexpansive mappingsin Hilbert spaces, Fixed Point Theory Appl. 41 (2015), 12 pages;
  • C. Yang, S. He, Convergence of explicit iterative algorithms for solving a class of variational inequalities, Wseas Trans. Math., (2014), 830-839;
  • H. Zhou, Convergence theorems of common fixed points for a finite family of Lipschitz pseudocontractionsin Banach spaces, Nonlinear Analysis, 68 (2008), 2977-2983;
  • H.Y. Zhou, P.Y. Wang, A simpler explicit iterative algorithm for a class of variational inequalities in Hilbert spaces, J. Optim. Theory Appl. 161 (2014), 716-727.
There are 94 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Articles
Authors

Giuseppe Marino

Roberta Zaccone

Publication Date March 25, 2018
Published in Issue Year 2018 Volume: 2 Issue: 1

Cite

Cited By

On some midpoint-type algorithms.
Advances in the Theory of Nonlinear Analysis and its Application
https://doi.org/10.31197/atnaa.407069