Research Article
BibTex RIS Cite

Sufficient conditions of non global solution for fractional damped wave equations with non-linear memory

Year 2018, Volume: 2 Issue: 4, 224 - 237, 24.12.2018
https://doi.org/10.31197/atnaa.481339

Abstract

The focus of the current paper is to prove nonexistence results for the Cauchy
problem of a wave equation with fractional damping and non linear memory.
  Our method of proof is based on suitable choices of the test
functions in the weak formulation of the sought solutions.

References

  • [1] V. Barbu, Partial Differential Equations and Boundry Value Problems. Science + Business media, B. V. Springer. Vol. 441.
  • [2] A.A. Kilbas, H.M. Sarisvatana, J.J. Trujillo, Theory and applications of fractional Differential Equations, North-Holland mathematics studies. 204, ELSEVIER 2006.
  • [3] H. Fujita, On the Blowing up of solutions of the problem for ut = ∆u+u1+α, Faculty of science, University of Tokyo. 13 (1966) 109-124.
  • [4] T. Cazenave, F. Dickstein, F. D. Weissler, An equation whose Fujita critical exponent is not given by scaling, Nonlinear anal. 68 (2008) 862-874.
  • [5] A. Fino, Critical exponent for damped wave equations with nonlinear memory, Hal Arch. Ouv. Id: 00473941v2 (2010).
  • [6] M. Berbiche, A. Hakem, Finite time blow-up of solutions for damped wave Equation with non linear Memory, Comm. Math. Analysis. (14)(1)(2013) 72-84.
  • [7] S. Selberg, Lecture Notes, Math. 632 PDE, http//www.math.ntnu.no/ sselberg, (2001).
  • [8] I. Podlubny, Fractional Differetial Equations, Mathematics in science and engineering. Vol 198, University of Kosice,Slovak republic.
  • [9] G. Todorova, B. Yardanov, Critical exponent for a non linear wave equation with damping, Journal of Differential equations. 174 (2001) 464-489.
  • [10] Qi S. Zhang, A Blow up result for a nonlinear wave equation with damping, C.R. Acad. Sciences, Paris. (2001).
  • [11] S. Katayama, Md A. Sheikh, S. Tarama, The Cauchy and mixed problems for semilinear wave equations with damping terms, Math. Japonica. 50 (3) (2000) 459-566.
  • [12] S. I. Pohozaev, A. Tesei, Blow-up of nonnegative solutions to quasilinear parabolic inequalities, Atti Accad. Naz. Lincei Cl. Sci. Fis. Math. Natur. Rend. Lincei. 9 Math. App. 11 N◦2 (2000) 99-109.
  • [13] E. Mitidieri, S.I. Pohozaev, Nonexistence of weak solutions for some degenerate elliptic and parabolic problems on RN,J. Evol. Equations. (1) (2001) 189-220.
  • [14] E. Mitidieri, S.I. Pohozaev, A priori estimates and blow-up of solutions to nonlinear partial differential equations and inequalities, Proc. Steklov. Inst. Math. 234 (2001) 1-383.
  • [15] S.G. Samko, A.A. Kilbas, O. I. Marichev, Fractional Integrals and derivatives, Theory and application, Gordon andBreach Publishers. (1987).
  • [16] J.L. Lions, W.A. Strauss, Some nonlinear evolution equations, Bull. Soc. Math. France. 93(1965) 43-96.
  • [17] Yuta Wakasugi, On the diffusive structure for the damped wave equation with variable coefficients, doctoral thesis, Graduate school of science, Osaka University. (2014).
  • [18] P. Souplet, Monotonicity of solutions and blow-up for semilinear parabolic equations with nonlinear memory, Z. angew. Math. Phys. 55(2004) 28-31.
  • [19] M.E. Taylor, Partial differential equations III in nonlinear equations, Springer, New York. (1966)
Year 2018, Volume: 2 Issue: 4, 224 - 237, 24.12.2018
https://doi.org/10.31197/atnaa.481339

Abstract

References

  • [1] V. Barbu, Partial Differential Equations and Boundry Value Problems. Science + Business media, B. V. Springer. Vol. 441.
  • [2] A.A. Kilbas, H.M. Sarisvatana, J.J. Trujillo, Theory and applications of fractional Differential Equations, North-Holland mathematics studies. 204, ELSEVIER 2006.
  • [3] H. Fujita, On the Blowing up of solutions of the problem for ut = ∆u+u1+α, Faculty of science, University of Tokyo. 13 (1966) 109-124.
  • [4] T. Cazenave, F. Dickstein, F. D. Weissler, An equation whose Fujita critical exponent is not given by scaling, Nonlinear anal. 68 (2008) 862-874.
  • [5] A. Fino, Critical exponent for damped wave equations with nonlinear memory, Hal Arch. Ouv. Id: 00473941v2 (2010).
  • [6] M. Berbiche, A. Hakem, Finite time blow-up of solutions for damped wave Equation with non linear Memory, Comm. Math. Analysis. (14)(1)(2013) 72-84.
  • [7] S. Selberg, Lecture Notes, Math. 632 PDE, http//www.math.ntnu.no/ sselberg, (2001).
  • [8] I. Podlubny, Fractional Differetial Equations, Mathematics in science and engineering. Vol 198, University of Kosice,Slovak republic.
  • [9] G. Todorova, B. Yardanov, Critical exponent for a non linear wave equation with damping, Journal of Differential equations. 174 (2001) 464-489.
  • [10] Qi S. Zhang, A Blow up result for a nonlinear wave equation with damping, C.R. Acad. Sciences, Paris. (2001).
  • [11] S. Katayama, Md A. Sheikh, S. Tarama, The Cauchy and mixed problems for semilinear wave equations with damping terms, Math. Japonica. 50 (3) (2000) 459-566.
  • [12] S. I. Pohozaev, A. Tesei, Blow-up of nonnegative solutions to quasilinear parabolic inequalities, Atti Accad. Naz. Lincei Cl. Sci. Fis. Math. Natur. Rend. Lincei. 9 Math. App. 11 N◦2 (2000) 99-109.
  • [13] E. Mitidieri, S.I. Pohozaev, Nonexistence of weak solutions for some degenerate elliptic and parabolic problems on RN,J. Evol. Equations. (1) (2001) 189-220.
  • [14] E. Mitidieri, S.I. Pohozaev, A priori estimates and blow-up of solutions to nonlinear partial differential equations and inequalities, Proc. Steklov. Inst. Math. 234 (2001) 1-383.
  • [15] S.G. Samko, A.A. Kilbas, O. I. Marichev, Fractional Integrals and derivatives, Theory and application, Gordon andBreach Publishers. (1987).
  • [16] J.L. Lions, W.A. Strauss, Some nonlinear evolution equations, Bull. Soc. Math. France. 93(1965) 43-96.
  • [17] Yuta Wakasugi, On the diffusive structure for the damped wave equation with variable coefficients, doctoral thesis, Graduate school of science, Osaka University. (2014).
  • [18] P. Souplet, Monotonicity of solutions and blow-up for semilinear parabolic equations with nonlinear memory, Z. angew. Math. Phys. 55(2004) 28-31.
  • [19] M.E. Taylor, Partial differential equations III in nonlinear equations, Springer, New York. (1966)
There are 19 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Articles
Authors

Tayep Hadj Kaddour This is me

Ali Hakem

Publication Date December 24, 2018
Published in Issue Year 2018 Volume: 2 Issue: 4

Cite