Research Article
BibTex RIS Cite

Iterative algorithm for computing fixed points of demicontractive and zeros points of multivalued accretive operators in certain Banach spaces with application

Year 2020, Volume: 4 Issue: 2, 100 - 111, 30.06.2020
https://doi.org/10.31197/atnaa.655466

Abstract

In this paper, an iterative algorithm for finding a common point of the set of common zero of an infinite family of multivalued accretive operators and the set of fixed points of a demicontractive operator is constructed and studied in certain Banach spaces having a weakly continuous duality map. Under suitable control conditions, strong convergence of the sequence generated by proposed algorithm to a common point of the two sets is established. Moreover, application to convex minimization problems involving an infinite family of lower semi-continuous and convex functions are included.The main theorems develop and complement the recent results announced by researchers in this area.

References

  • F. E. Browder, Convergenge theorem for sequence of nonlinear operator in Banach spaces, 100 (1967) 201-225.
  • R. E. Bruck Jr, A strongly convergent iterative solution of 0 ∈ U (x) for a maximal monotone operator U in Hilbert spaces, J. Math. Anal. Appl., 48,114-126. (1974).
  • R. D. Chen, Z. C. Zhu, Viscosity approximation fixed point for nonexpansive and m-accretive operators, Fixed Point Theory Appl., 2006 (2006), 10 pages.
  • I. Cioranescu, Geometry of Banach space, duality mapping and nonlinear problems, Kluwer, Dordrecht, (1990).
  • S. Chang, J. K. Kim, X. R. Wang, Modified block iterative algorithm for solving convex feasibility problems in Banach spaces, Journal of Inequalities and Applications, vol. 2010, Article ID 869684, 14 pages.
  • C. E. Chidume, Geometric Properties of Banach spaces and Nonlinear Iterations, Springer Verlag Series: Lecture Notes in Mathematics, Vol. 1965,(2009), ISBN 978-1-84882-189. C.E. Chidume, N. Djitte, Strong convergence theorems for zeros of bounded maximal monotone nonlinear operators, J. Abstract and Applied Analysis, Volume 2012, Article ID 681348, 19 pages, doi:10.1155/2012/681348.
  • C.E. Chidume, The solution by iteration of nonlinear equations in certain Banach spaces, J. Nigerian Math. Soc., 3 (1984), 57-62.
  • K. Goebel and W.A. Kirk, Topics in metric fixed poit theory, Cambridge Studies, in Advanced Mathemathics, Vol. 28, University Cambridge Press, Cambridge 1990
  • K. Goebel, S. Reich, (1984). Uniform Convexity, Hyperbolic Geometry, and Nonexpansive Mappings, Marcel Dekker, New York.
  • O. Guller, On the convergence of the proximal point algorithm for convex minimization, SIAM J. Control Optim., 29 (1991), 403-419.
  • B. Halpern, Fixed points of nonexpansive maps, Bull. Amer. Math. Soc., 3 (1967), 957-961.
  • Hicks, T.L. Kubicek, J.D., On the Mann iteration process in a Hilbert spaces, J. Math. Anal. Appl. 59 (1977) 498-504.
  • S. Ishikawa, Fixed points and iteration of nonexpansive mapping in a Banach space, Proc. Amer. Math. Soc., 73 (1976), 61-71.
  • S. Kamimura, W. Takahashi, Strong convergence of a proximal-type algorithm in a Banach space, SIAM J. of Optimization 13(3) (5003), 938-945.
  • N. Lehdili, A. Moudafi, Combining the proximal algorithm and Tikhonov regularization, Optimization 37(1996), 239-252.
  • T.C. Lim, H.K. Xu, Fixed point theorems for assymptoticaly nonexpansive mapping, Nonliear Anal 22(1994), no. 11, 1345-1355.
  • W.R. Mann, Mean value methods in iteration, Proc. Amer. Math. Soc., 4 (1953) 506-510.
  • G. Marino, H.K. Xu, Weak and strong convergence theorems for strict pseudo-contractions in Hilbert spaces , J. Math. Math. Appl., 329(2007), 336-346.
  • B. Martinet, RÃľgularisation dâĂŹinÃľquations variationnelles par approximations successives, (French) Rev. Franaise Informat. Recherche OpÃľrationnelle, 4 (1970), 154-158.
  • A. Moudafi, Viscosity approximation methods for fixed-point problems, J. Math Anal. Appl. 241 (2000), 46-55.
  • G.J. Minty, Monotone (nonlinear) operator in Hilbert space. Duke Math. 29, 341-V346 (1962).
  • Miyadera, I. (1992) Nonlinear semigroups, Translations of Mathematical Monographs, 109 American Mathematical Society, Providence, RI.
  • Z. Opial, Weak convergence of sequence of succecive approximation of nonexpansive mapping, Bull Amer. Math.soc. 73 (1967), 591-597.
  • R. T. Rockafellar, Monotone operators and the proximal point algorithm, SIAM J. Control Optimization, 14 (1976), 877-898.
  • S. Reich: Weak convergence theorems for nonexpansive mappings in Banach spaces, Journal of Mathematical Analysis and Applications, vol. 67, no. 2, pp. 4276, 1979.
  • T.M.M. Sow, N. DjittÃľ, and C.E. Chidume, A path convergence theorem and construction of fixed points for nonexpansive mappings in certain Banach spaces, Carpathian J.Math.,32(2016),No.2,217-226,2016.
  • J. J. Soo, Strong convergence of an iterative algorithm for accretive operators and nonexpansive mappings, Journal of Nonlinear Sciences and Applications, (2016), Vol 9, ISSN 2008-1901
  • H. K. Xu , A regularization method for the proximal point algorithm, J. Global. Optim., 36, 115-125. (2006).
  • H.K. Xu, Iterative algorithms for nonlinear operators, J. London Math. Soc. 66 (2002), no. 2, 240 - 256.
  • Y. Yao, H. Zhou, Y. C. Liou, Strong convergence of modified Krasnoselskii-Mann iterative algorithm for nonexpansive mappings, J. Math. Anal. Appl. Comput. 29 (2009) 383-389.
Year 2020, Volume: 4 Issue: 2, 100 - 111, 30.06.2020
https://doi.org/10.31197/atnaa.655466

Abstract

References

  • F. E. Browder, Convergenge theorem for sequence of nonlinear operator in Banach spaces, 100 (1967) 201-225.
  • R. E. Bruck Jr, A strongly convergent iterative solution of 0 ∈ U (x) for a maximal monotone operator U in Hilbert spaces, J. Math. Anal. Appl., 48,114-126. (1974).
  • R. D. Chen, Z. C. Zhu, Viscosity approximation fixed point for nonexpansive and m-accretive operators, Fixed Point Theory Appl., 2006 (2006), 10 pages.
  • I. Cioranescu, Geometry of Banach space, duality mapping and nonlinear problems, Kluwer, Dordrecht, (1990).
  • S. Chang, J. K. Kim, X. R. Wang, Modified block iterative algorithm for solving convex feasibility problems in Banach spaces, Journal of Inequalities and Applications, vol. 2010, Article ID 869684, 14 pages.
  • C. E. Chidume, Geometric Properties of Banach spaces and Nonlinear Iterations, Springer Verlag Series: Lecture Notes in Mathematics, Vol. 1965,(2009), ISBN 978-1-84882-189. C.E. Chidume, N. Djitte, Strong convergence theorems for zeros of bounded maximal monotone nonlinear operators, J. Abstract and Applied Analysis, Volume 2012, Article ID 681348, 19 pages, doi:10.1155/2012/681348.
  • C.E. Chidume, The solution by iteration of nonlinear equations in certain Banach spaces, J. Nigerian Math. Soc., 3 (1984), 57-62.
  • K. Goebel and W.A. Kirk, Topics in metric fixed poit theory, Cambridge Studies, in Advanced Mathemathics, Vol. 28, University Cambridge Press, Cambridge 1990
  • K. Goebel, S. Reich, (1984). Uniform Convexity, Hyperbolic Geometry, and Nonexpansive Mappings, Marcel Dekker, New York.
  • O. Guller, On the convergence of the proximal point algorithm for convex minimization, SIAM J. Control Optim., 29 (1991), 403-419.
  • B. Halpern, Fixed points of nonexpansive maps, Bull. Amer. Math. Soc., 3 (1967), 957-961.
  • Hicks, T.L. Kubicek, J.D., On the Mann iteration process in a Hilbert spaces, J. Math. Anal. Appl. 59 (1977) 498-504.
  • S. Ishikawa, Fixed points and iteration of nonexpansive mapping in a Banach space, Proc. Amer. Math. Soc., 73 (1976), 61-71.
  • S. Kamimura, W. Takahashi, Strong convergence of a proximal-type algorithm in a Banach space, SIAM J. of Optimization 13(3) (5003), 938-945.
  • N. Lehdili, A. Moudafi, Combining the proximal algorithm and Tikhonov regularization, Optimization 37(1996), 239-252.
  • T.C. Lim, H.K. Xu, Fixed point theorems for assymptoticaly nonexpansive mapping, Nonliear Anal 22(1994), no. 11, 1345-1355.
  • W.R. Mann, Mean value methods in iteration, Proc. Amer. Math. Soc., 4 (1953) 506-510.
  • G. Marino, H.K. Xu, Weak and strong convergence theorems for strict pseudo-contractions in Hilbert spaces , J. Math. Math. Appl., 329(2007), 336-346.
  • B. Martinet, RÃľgularisation dâĂŹinÃľquations variationnelles par approximations successives, (French) Rev. Franaise Informat. Recherche OpÃľrationnelle, 4 (1970), 154-158.
  • A. Moudafi, Viscosity approximation methods for fixed-point problems, J. Math Anal. Appl. 241 (2000), 46-55.
  • G.J. Minty, Monotone (nonlinear) operator in Hilbert space. Duke Math. 29, 341-V346 (1962).
  • Miyadera, I. (1992) Nonlinear semigroups, Translations of Mathematical Monographs, 109 American Mathematical Society, Providence, RI.
  • Z. Opial, Weak convergence of sequence of succecive approximation of nonexpansive mapping, Bull Amer. Math.soc. 73 (1967), 591-597.
  • R. T. Rockafellar, Monotone operators and the proximal point algorithm, SIAM J. Control Optimization, 14 (1976), 877-898.
  • S. Reich: Weak convergence theorems for nonexpansive mappings in Banach spaces, Journal of Mathematical Analysis and Applications, vol. 67, no. 2, pp. 4276, 1979.
  • T.M.M. Sow, N. DjittÃľ, and C.E. Chidume, A path convergence theorem and construction of fixed points for nonexpansive mappings in certain Banach spaces, Carpathian J.Math.,32(2016),No.2,217-226,2016.
  • J. J. Soo, Strong convergence of an iterative algorithm for accretive operators and nonexpansive mappings, Journal of Nonlinear Sciences and Applications, (2016), Vol 9, ISSN 2008-1901
  • H. K. Xu , A regularization method for the proximal point algorithm, J. Global. Optim., 36, 115-125. (2006).
  • H.K. Xu, Iterative algorithms for nonlinear operators, J. London Math. Soc. 66 (2002), no. 2, 240 - 256.
  • Y. Yao, H. Zhou, Y. C. Liou, Strong convergence of modified Krasnoselskii-Mann iterative algorithm for nonexpansive mappings, J. Math. Anal. Appl. Comput. 29 (2009) 383-389.
There are 30 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Articles
Authors

Thierno Sow

Publication Date June 30, 2020
Published in Issue Year 2020 Volume: 4 Issue: 2

Cite