Research Article
BibTex RIS Cite
Year 2020, Volume: 4 Issue: 4, 361 - 372, 30.12.2020
https://doi.org/10.31197/atnaa.703984

Abstract

References

  • [1] B. Ahmad, S. Sivasundaram, Some existence results for fractional integro-diferential equations with nonlinear conditions, Communications Appl. Anal. 12 (2008) 107-112.
  • [2] M. Ali, W. Ma, New exact solutions of nonlinear (3 + 1)-dimensional Boiti-Leon-Manna-Pempinelli equation, Adv. Math. Phys. 2019 (2019) 1-8.
  • [3] M. Ali, M. Mousa, W. Ma, Solution of nonlinear Volterra integral equations with weakly singular kernel by using the HOBW method, Advances in Mathematical Physics, 2019 (2019) 1-10.
  • [4] M. Ali, A. Hadhoud, H. Srivastava, Solution of fractional Volterra-Fredholm integro-diferential equations under mixed boundary conditions by using the HOBW method, Adv. Di?erence Equ. 2019(1) (2019) 1-14.
  • [5] M. Ali, A truncation method for solving the time-fractional Benjamin-Ono equation, J. Appl. Math. 2019(18) (2019) 1-7.
  • [6] A. Ardjouni, A. Djoudi, Existence and uniqueness of solutions for nonlinear implicit Caputo-Hadamard fractional difer- ential equations with nonlocal conditions, Adv. Theory Nonlinear Anal. Appl. 3 (2019) 46-52.
  • [7] M. Bani Issa, A. Hamoud, Solving systems of Volterra integro-diferential equations by using semi-analytical techniques, Technol. Rep. Kansai Univ. 62 (2020) 685-690.
  • [8] S. Cheng, S. Talwong, V. Laohakosol, Exact solution of iterative functional diferential equation, Computing, 76 (2006) 67-76.
  • [9] A. Hamoud, K. Ghadle, The approximate solutions of fractional Volterra-Fredholm integro-diferential equations by using analytical techniques, Probl. Anal. Issues Anal. 7(25) (2018) 41-58.
  • [10] A. Hamoud, K. Ghadle, Usage of the homotopy analysis method for solving fractional Volterra-Fredholm integro-diferential equation of the second kind, Tamkang J. Math. 49 (2018) 301-315.
  • [11] A. Hamoud, K. Ghadle, Existence and uniqueness of the solution for Volterra-Fredholm integro-diferential equations, Journal of Siberian Federal University. Math. Phys. 11 (2018) 692-701.
  • [12] A. Hamoud, K. Ghadle, Existence and uniqueness of solutions for fractional mixed Volterra-Fredholm integro-diferential equations, Indian J. Math. 60 (2018) 375-395.
  • [13] A. Hamoud, K. Ghadle, Some new existence, uniqueness and convergence results for fractional Volterra-Fredholm integro- diferential equations, J. Appl. Comput. Mech. 5(1) (2019) 58-69.
  • [14] A. Hamoud, K. Ghadle, Some new uniqueness results of solutions for fractional Volterra-Fredholm integro-diferential equations, Iran. J. Math. Sci. Inform. (To Appears).
  • [15] J. He, Some applications of nonlinear fractional diferential equations and their approximations, Bull. Sci. Technol. Soc. 15 (1999) 86-90.
  • [16] R. Ibrahim, S. Momani, On the existence and uniqueness of solutions of a class of fractional diferential equations, J. Math. Anal. Appl. 334 (2007) 1-10.
  • [17] R. Ibrahim, Existence of iterative Cauchy fractional diferential equations, Int. J. Math. Sci. 7 (2013) 379-384.
  • [18] S. Kendre, V. Kharat, R. Narute, On existence of solution for iterative integro-diferential equations, Nonlinear Anal. Di?er. Equ. 3 (2015) 123-131.
  • [19] A. Kilbas, H. Srivastava, J. Trujillo, Theory and Applications of Fractional Diferential Equations, North-Holland Math. Stud., Elsevier, Amsterdam, 2006.
  • [20] V. Lakshmikantham, M. Rao, Theory of Integro-Di?erential Equations, Gordon & Breach, London, 1995.
  • [21] M. Lauran, Existence results for some diferential equations with deviating argument, Filomat, 25 (2011) 21-31.
  • [22] W. Li, S. Cheng, A picard theorem for iterative diferential equations, Demonstratio Math., 42 (2009) 371-380.
  • [23] M. Matar, Controllability of fractional semilinear mixed Volterra-Fredholm integro-diferential equations with nonlocal conditions, Int. J. Math. Anal. 4 (2010) 1105-1116.
  • [24] S. Momani, A. Jameel, S. Al-Azawi, Local and global uniqueness theorems on fractional integro-diferential equations via Bihari's and Gronwall's inequalities, Soochow J. Math., 33 (2007) 619-627.
  • [25] S. Muthaiah, M. Murugesan, N. Thangaraj, Existence of solutions for nonlocal boundary value problem of Hadamard fractional diferential equations, Adv. Theory Nonlinear Anal. Appl. 3 (2019) 162-173.
  • [26] K. Miller, B. Ross, An Introduction to the Fractional Calculus and Diferential Equations, John Wiley, New York, 1993.
  • [27] R. Panda, M. Dash, Fractional generalized splines and signal processing, Signal Process, 86 (2006) 2340-2350.
  • [28] S. Samko, A. Kilbas and O. Marichev, Fractional Integrals and Derivatives, Theory and Applications, Gordon and Breach, Yverdon, 1993.
  • [29] S. Unhaley, S. Kendre, On existence and uniqueness results for iterative fractional integro-diferential equation with devi- ating arguments, Appl. Math. E-Notes, 19 (2019) 116-127.
  • [30] J. Wu, Y. Liu, Existence and uniqueness of solutions for the fractional integro-diferential equations in Banach spaces, Electron. J. Diferential Equations, 2009 (2009) 1-8.

Existence and Uniqueness Results for Volterra-Fredholm Integro Differential Equations

Year 2020, Volume: 4 Issue: 4, 361 - 372, 30.12.2020
https://doi.org/10.31197/atnaa.703984

Abstract

This paper establishes a study on some important latest innovations in the existence and uniqueness results by means of Krasnoselskii's fixed point and the Banach fixed point theorems for Caputo fractional Volterra-Fredholm integro-differential equations with initial condition. New conditions on the nonlinear terms are given to pledge the equivalence. Finally, an illustrative example is also presented. 

References

  • [1] B. Ahmad, S. Sivasundaram, Some existence results for fractional integro-diferential equations with nonlinear conditions, Communications Appl. Anal. 12 (2008) 107-112.
  • [2] M. Ali, W. Ma, New exact solutions of nonlinear (3 + 1)-dimensional Boiti-Leon-Manna-Pempinelli equation, Adv. Math. Phys. 2019 (2019) 1-8.
  • [3] M. Ali, M. Mousa, W. Ma, Solution of nonlinear Volterra integral equations with weakly singular kernel by using the HOBW method, Advances in Mathematical Physics, 2019 (2019) 1-10.
  • [4] M. Ali, A. Hadhoud, H. Srivastava, Solution of fractional Volterra-Fredholm integro-diferential equations under mixed boundary conditions by using the HOBW method, Adv. Di?erence Equ. 2019(1) (2019) 1-14.
  • [5] M. Ali, A truncation method for solving the time-fractional Benjamin-Ono equation, J. Appl. Math. 2019(18) (2019) 1-7.
  • [6] A. Ardjouni, A. Djoudi, Existence and uniqueness of solutions for nonlinear implicit Caputo-Hadamard fractional difer- ential equations with nonlocal conditions, Adv. Theory Nonlinear Anal. Appl. 3 (2019) 46-52.
  • [7] M. Bani Issa, A. Hamoud, Solving systems of Volterra integro-diferential equations by using semi-analytical techniques, Technol. Rep. Kansai Univ. 62 (2020) 685-690.
  • [8] S. Cheng, S. Talwong, V. Laohakosol, Exact solution of iterative functional diferential equation, Computing, 76 (2006) 67-76.
  • [9] A. Hamoud, K. Ghadle, The approximate solutions of fractional Volterra-Fredholm integro-diferential equations by using analytical techniques, Probl. Anal. Issues Anal. 7(25) (2018) 41-58.
  • [10] A. Hamoud, K. Ghadle, Usage of the homotopy analysis method for solving fractional Volterra-Fredholm integro-diferential equation of the second kind, Tamkang J. Math. 49 (2018) 301-315.
  • [11] A. Hamoud, K. Ghadle, Existence and uniqueness of the solution for Volterra-Fredholm integro-diferential equations, Journal of Siberian Federal University. Math. Phys. 11 (2018) 692-701.
  • [12] A. Hamoud, K. Ghadle, Existence and uniqueness of solutions for fractional mixed Volterra-Fredholm integro-diferential equations, Indian J. Math. 60 (2018) 375-395.
  • [13] A. Hamoud, K. Ghadle, Some new existence, uniqueness and convergence results for fractional Volterra-Fredholm integro- diferential equations, J. Appl. Comput. Mech. 5(1) (2019) 58-69.
  • [14] A. Hamoud, K. Ghadle, Some new uniqueness results of solutions for fractional Volterra-Fredholm integro-diferential equations, Iran. J. Math. Sci. Inform. (To Appears).
  • [15] J. He, Some applications of nonlinear fractional diferential equations and their approximations, Bull. Sci. Technol. Soc. 15 (1999) 86-90.
  • [16] R. Ibrahim, S. Momani, On the existence and uniqueness of solutions of a class of fractional diferential equations, J. Math. Anal. Appl. 334 (2007) 1-10.
  • [17] R. Ibrahim, Existence of iterative Cauchy fractional diferential equations, Int. J. Math. Sci. 7 (2013) 379-384.
  • [18] S. Kendre, V. Kharat, R. Narute, On existence of solution for iterative integro-diferential equations, Nonlinear Anal. Di?er. Equ. 3 (2015) 123-131.
  • [19] A. Kilbas, H. Srivastava, J. Trujillo, Theory and Applications of Fractional Diferential Equations, North-Holland Math. Stud., Elsevier, Amsterdam, 2006.
  • [20] V. Lakshmikantham, M. Rao, Theory of Integro-Di?erential Equations, Gordon & Breach, London, 1995.
  • [21] M. Lauran, Existence results for some diferential equations with deviating argument, Filomat, 25 (2011) 21-31.
  • [22] W. Li, S. Cheng, A picard theorem for iterative diferential equations, Demonstratio Math., 42 (2009) 371-380.
  • [23] M. Matar, Controllability of fractional semilinear mixed Volterra-Fredholm integro-diferential equations with nonlocal conditions, Int. J. Math. Anal. 4 (2010) 1105-1116.
  • [24] S. Momani, A. Jameel, S. Al-Azawi, Local and global uniqueness theorems on fractional integro-diferential equations via Bihari's and Gronwall's inequalities, Soochow J. Math., 33 (2007) 619-627.
  • [25] S. Muthaiah, M. Murugesan, N. Thangaraj, Existence of solutions for nonlocal boundary value problem of Hadamard fractional diferential equations, Adv. Theory Nonlinear Anal. Appl. 3 (2019) 162-173.
  • [26] K. Miller, B. Ross, An Introduction to the Fractional Calculus and Diferential Equations, John Wiley, New York, 1993.
  • [27] R. Panda, M. Dash, Fractional generalized splines and signal processing, Signal Process, 86 (2006) 2340-2350.
  • [28] S. Samko, A. Kilbas and O. Marichev, Fractional Integrals and Derivatives, Theory and Applications, Gordon and Breach, Yverdon, 1993.
  • [29] S. Unhaley, S. Kendre, On existence and uniqueness results for iterative fractional integro-diferential equation with devi- ating arguments, Appl. Math. E-Notes, 19 (2019) 116-127.
  • [30] J. Wu, Y. Liu, Existence and uniqueness of solutions for the fractional integro-diferential equations in Banach spaces, Electron. J. Diferential Equations, 2009 (2009) 1-8.
There are 30 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Articles
Authors

Ahmed Hamoud 0000-0002-8877-7337

Nedal Mohammed This is me 0000-0002-9997-7297

Kirtiwant Ghadle This is me 0000-0003-3205-5498

Publication Date December 30, 2020
Published in Issue Year 2020 Volume: 4 Issue: 4

Cite

Cited By