Research Article
BibTex RIS Cite

The existence and Ulam-Hyers stability results for generalized Hilfer fractional integro-differential equations with nonlocal integral boundary conditions

Year 2022, Volume: 6 Issue: 1, 101 - 117, 31.03.2022
https://doi.org/10.31197/atnaa.917180

Abstract

In this paper, we study the existence and uniqueness of mild solutions for nonlinear fractional integro-differential equations (FIDEs) subject to nonlocal integral boundary conditions (nonlocal IBC) in the frame of a ξ-Hilfer fractional derivative (FDs). Further, we discuss different kinds of stability of Ulam-Hyers (UH) for mild solutions to the given problem. Using the fixed point theorems (FPT's) together with generalized Gronwall inequality the desired outcomes are proven. Examples are given which illustrate the effectiveness of the theoretical results.

References

  • [1] S. Abbas, M. Benchohra, A. Petrusel, Ulam stability for Hilfer type fractional differential inclusions via the weakly Picard operators theory, Fractional Calc. Appl. Anal. 20 (2017) 383-398.
  • [2] S. Abbas, M. Benchohra, J.E. Lagreg, A. Alsaedi, Y. Zhou ,Existence and Ulam stability for fractional differential equations of Hilfer-Hadamard type, Adv. Diff. Equa. 2017(1) (2017) 180.
  • [3] M.S. Abdo, S. Panchal, Fractional integro-differential equations involving Ψ-Hilfer fractional derivative, Adv. Appl. Math. Mech. 11 (2019) 1-22.
  • [4] M.S. Abdo, S.T.M. Thabet, B. Ahmad, The existence and Ulam-Hyers stability results for Ψ-Hilfer fractional integro- differential equations, J. Pseudo-Di?er. Oper. Appl. 11 (2020) 1757-1780.
  • [5] A. Ardjouni, A. Djoudi, Existence and uniqueness of solutions for nonlinear implicit Caputo-Hadamard fractional differ- ential equations with nonlocal conditions, Advances in the Theory of Nonlinear Analysis and its Application 3(1) (2019) 46-52.
  • [6] A. Ardjouni, A. Djoudi, Existence and uniqueness of solutions for nonlinear hybrid implicit Caputo-Hadamard fractional differential equations, Results in Nonlinear Analysis 2(3) (2019) 136-142.
  • [7] S. Asawasamrit, A. Kijjathanakorn, S.K. Ntouyas, J. Tariboon, Nonlocal boundary value problems for Hilfer fractional differential equations, Bull. Korean Math. Soc. 55(6) (2018) 1639-1657.
  • [8] M. Benchohra, J.E. Lazreg, Existence and Ulam stability for nonlinear implicit fractional differential equations with Hadamard derivative, Stud. Univ. Babes-Bolyai Math. 62(1) (2017) 27-38.
  • [9] D. Baleanu, J.A.T. Machado, A.C.J. Luo, Fractional dynamics and control, Springer, New York, (2002).
  • [10] L. Debnath, Recent applications of fractional calculus to science and engineering, Int. J. Math. Math. Sci. 54 (2003) 3413-3442.
  • [11] K. Diethelm, The analysis of fractional differential equations, Lecture Notes in Mathematics, Springer-verlag, Berlin, Heidelberg, (2010).
  • [12] K.M. Furati, M.D. Kassim, Existence and uniqueness for a problem involving Hilfer fractional derivative, Computers & Mathematics with Applications 64(6) (2012) 1616-1626.
  • [13] R. Hilfer, Applications of fractional calculus in physics, World Scientific, Singapore, (2000).
  • [14] A.A. Kilbas, H.M. Srivastava, J.J. Trujillo, Theory and applications of fractional differential equations, Elsevier Science B. V., Amsterdam, (2006).
  • [15] V. Lakshmikantham, S. Leela, J.V. Devi, Theory of fractional dynamic systems, Cambridge Scientific Publishers, Cam- bridge, (2009).
  • [16] J.E. Lazreg, S. Abbas, M. Benchohra, E. Karapinar, Impulsive Caputo-Fabrizio fractional differential equations in b-metric spaces, Open Mathematics 19(1) (2021) 363-372.
  • [17] Z. Li, C. Wang, R.P. Agarwal, R. Sakthivel, Hyers-Ulam-Rassias stability of quaternion multidimensional fuzzy nonlinear di?erence equations with impulses, Iranian Journal of Fuzzy Systems 18(3) (2021) 143-160.
  • [18] R. Magin, Fractional calculus in bioengineering, Critical Rev. Biomed. Eng. 32 (2004) 1-104.
  • [19] D.A. Mali, K.D. Kucche, Nonlocal boundary value problem for generalized Hilfer implicit fractional differential equations, Math. Meth. Appl. Sci. 43(15) (2020) 8608-8631.
  • [20] I. Podlubny, Fractional di?erential equations, Academic Press, San Diego, 1999.
  • [21] T.M. Rassians, On the stability of linear mappings in Banach spaces, Proc. Amer. Math. Soc. 72 (1978) 297-300.
  • [22] I.A. Rus, Ulam stability of ordinary differential equations,Stud. Univ. Babes-Bolyai Math. 54 (4) (2009) 125-133.
  • [23] I.A. Rus, Ulam stabilities of ordinary differential equations in a Banach space, Carpathian J. Math. 26 (2010) 103-107.
  • [24] A. Salim, M. Benchohra, E. Karapinar, J.E. Lazreg, Existence and Ulam stability for impulsive generalized Hilfer-type fractional differential equations, Adv. Differ. Equ. 2020 (2020) 601.
  • [25] D.R. Smart, Fixed point theorems, Cambridge Tracts in Mathematics, no. 66, Cambridge University Press, London-New York, (1974).
  • [26] J.V.C. Sousa, E.C.D. Oliveira, On the Ψ-Hilfer fractional derivative,Commun. Nonlinear Sci. Numer. Simula. 60 (2018) 72-91.
  • [27] J.V.C. Sousa, E.C.D. Oliveira, On the Ulam-Hyers-Rassias stability for nonlinear fractional differential equations using the Ψ-Hilfer operator, J. Fixed Point Theory Appl. 20 (2018) 96.
  • [28] J.V.C. Sousa, E.C.D. Oliveira, Ulam-Hyers stability of a nonlinear fractional Volterra integro-differential equation, Appl. Math. Lett. 81 (2018) 50-56.
  • [29] V.E. Tarasov, Fractional dynamics: Application of fractional calculus to dynamics of particles, Fields and Media, Springer, New York, (2011).
  • [30] H. Ye, J. Gao, Y. Ding, A generalized Gronwall inequality and its application to a fractional differential equation, J. Math. Anal. Appl. 328(2) (2007) 1075-1081.
  • [31] C. Wang, Z. Li, R.P. Agarwal, Hyers-Ulam-Rassias stability of high-dimensional quaternion impulsive fuzzy dynamic equations on time scales, Discrete & Continuous Dynamical Systems - S, doi: 10.3934/dcdss.2021041.
  • [32] J. Wang, L. Lv, Y. Zhou, Ulam stability and data dependence for fractional di?erential equations with Caputo derivative, Electron. J. Qual. Theory Di?er. Equ. 2011(63) (2011) 1-10.
Year 2022, Volume: 6 Issue: 1, 101 - 117, 31.03.2022
https://doi.org/10.31197/atnaa.917180

Abstract

References

  • [1] S. Abbas, M. Benchohra, A. Petrusel, Ulam stability for Hilfer type fractional differential inclusions via the weakly Picard operators theory, Fractional Calc. Appl. Anal. 20 (2017) 383-398.
  • [2] S. Abbas, M. Benchohra, J.E. Lagreg, A. Alsaedi, Y. Zhou ,Existence and Ulam stability for fractional differential equations of Hilfer-Hadamard type, Adv. Diff. Equa. 2017(1) (2017) 180.
  • [3] M.S. Abdo, S. Panchal, Fractional integro-differential equations involving Ψ-Hilfer fractional derivative, Adv. Appl. Math. Mech. 11 (2019) 1-22.
  • [4] M.S. Abdo, S.T.M. Thabet, B. Ahmad, The existence and Ulam-Hyers stability results for Ψ-Hilfer fractional integro- differential equations, J. Pseudo-Di?er. Oper. Appl. 11 (2020) 1757-1780.
  • [5] A. Ardjouni, A. Djoudi, Existence and uniqueness of solutions for nonlinear implicit Caputo-Hadamard fractional differ- ential equations with nonlocal conditions, Advances in the Theory of Nonlinear Analysis and its Application 3(1) (2019) 46-52.
  • [6] A. Ardjouni, A. Djoudi, Existence and uniqueness of solutions for nonlinear hybrid implicit Caputo-Hadamard fractional differential equations, Results in Nonlinear Analysis 2(3) (2019) 136-142.
  • [7] S. Asawasamrit, A. Kijjathanakorn, S.K. Ntouyas, J. Tariboon, Nonlocal boundary value problems for Hilfer fractional differential equations, Bull. Korean Math. Soc. 55(6) (2018) 1639-1657.
  • [8] M. Benchohra, J.E. Lazreg, Existence and Ulam stability for nonlinear implicit fractional differential equations with Hadamard derivative, Stud. Univ. Babes-Bolyai Math. 62(1) (2017) 27-38.
  • [9] D. Baleanu, J.A.T. Machado, A.C.J. Luo, Fractional dynamics and control, Springer, New York, (2002).
  • [10] L. Debnath, Recent applications of fractional calculus to science and engineering, Int. J. Math. Math. Sci. 54 (2003) 3413-3442.
  • [11] K. Diethelm, The analysis of fractional differential equations, Lecture Notes in Mathematics, Springer-verlag, Berlin, Heidelberg, (2010).
  • [12] K.M. Furati, M.D. Kassim, Existence and uniqueness for a problem involving Hilfer fractional derivative, Computers & Mathematics with Applications 64(6) (2012) 1616-1626.
  • [13] R. Hilfer, Applications of fractional calculus in physics, World Scientific, Singapore, (2000).
  • [14] A.A. Kilbas, H.M. Srivastava, J.J. Trujillo, Theory and applications of fractional differential equations, Elsevier Science B. V., Amsterdam, (2006).
  • [15] V. Lakshmikantham, S. Leela, J.V. Devi, Theory of fractional dynamic systems, Cambridge Scientific Publishers, Cam- bridge, (2009).
  • [16] J.E. Lazreg, S. Abbas, M. Benchohra, E. Karapinar, Impulsive Caputo-Fabrizio fractional differential equations in b-metric spaces, Open Mathematics 19(1) (2021) 363-372.
  • [17] Z. Li, C. Wang, R.P. Agarwal, R. Sakthivel, Hyers-Ulam-Rassias stability of quaternion multidimensional fuzzy nonlinear di?erence equations with impulses, Iranian Journal of Fuzzy Systems 18(3) (2021) 143-160.
  • [18] R. Magin, Fractional calculus in bioengineering, Critical Rev. Biomed. Eng. 32 (2004) 1-104.
  • [19] D.A. Mali, K.D. Kucche, Nonlocal boundary value problem for generalized Hilfer implicit fractional differential equations, Math. Meth. Appl. Sci. 43(15) (2020) 8608-8631.
  • [20] I. Podlubny, Fractional di?erential equations, Academic Press, San Diego, 1999.
  • [21] T.M. Rassians, On the stability of linear mappings in Banach spaces, Proc. Amer. Math. Soc. 72 (1978) 297-300.
  • [22] I.A. Rus, Ulam stability of ordinary differential equations,Stud. Univ. Babes-Bolyai Math. 54 (4) (2009) 125-133.
  • [23] I.A. Rus, Ulam stabilities of ordinary differential equations in a Banach space, Carpathian J. Math. 26 (2010) 103-107.
  • [24] A. Salim, M. Benchohra, E. Karapinar, J.E. Lazreg, Existence and Ulam stability for impulsive generalized Hilfer-type fractional differential equations, Adv. Differ. Equ. 2020 (2020) 601.
  • [25] D.R. Smart, Fixed point theorems, Cambridge Tracts in Mathematics, no. 66, Cambridge University Press, London-New York, (1974).
  • [26] J.V.C. Sousa, E.C.D. Oliveira, On the Ψ-Hilfer fractional derivative,Commun. Nonlinear Sci. Numer. Simula. 60 (2018) 72-91.
  • [27] J.V.C. Sousa, E.C.D. Oliveira, On the Ulam-Hyers-Rassias stability for nonlinear fractional differential equations using the Ψ-Hilfer operator, J. Fixed Point Theory Appl. 20 (2018) 96.
  • [28] J.V.C. Sousa, E.C.D. Oliveira, Ulam-Hyers stability of a nonlinear fractional Volterra integro-differential equation, Appl. Math. Lett. 81 (2018) 50-56.
  • [29] V.E. Tarasov, Fractional dynamics: Application of fractional calculus to dynamics of particles, Fields and Media, Springer, New York, (2011).
  • [30] H. Ye, J. Gao, Y. Ding, A generalized Gronwall inequality and its application to a fractional differential equation, J. Math. Anal. Appl. 328(2) (2007) 1075-1081.
  • [31] C. Wang, Z. Li, R.P. Agarwal, Hyers-Ulam-Rassias stability of high-dimensional quaternion impulsive fuzzy dynamic equations on time scales, Discrete & Continuous Dynamical Systems - S, doi: 10.3934/dcdss.2021041.
  • [32] J. Wang, L. Lv, Y. Zhou, Ulam stability and data dependence for fractional di?erential equations with Caputo derivative, Electron. J. Qual. Theory Di?er. Equ. 2011(63) (2011) 1-10.
There are 32 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Articles
Authors

Adel Lachouri 0000-0002-6269-8833

Abdelouaheb Ardjouni 0000-0003-0216-1265

Publication Date March 31, 2022
Published in Issue Year 2022 Volume: 6 Issue: 1

Cite