On the unique solvability of a Cauchy problem with a fractional derivative
Year 2023,
Volume: 7 Issue: 1, 232 - 242, 31.03.2023
Minzilya Kosmakova
,
Aleksandr Akhmetshin
Abstract
The unique solvability issues of the Cauchy problem with a fractional derivative is considered in the case when the coefficient at the desired function is a continuous function. The solution of the problem is found in an explicit form. The uniqueness theorem is proved. The existence theorem for a solution to the problem is proved by reducing it to a Volterra equation of the second kind with a singularity in the kernel, and the necessary and sufficient conditions for the existence of a solution to the problem are obtained.
Thanks
This research was funded by the Science Committee of the Ministry of Education and Science of the Republic of Kazakhstan (Grant No. AP09259780, 2021-2023.)
References
- [1] F.A. Aliev, N.A. Aliev, N.A. Safarova, Transformation of the Mittag-Leffler Function to an Exponential Function and Some of its Applications to Problems with a Fractional Derivative, Appl. and Comp. Math., 18 (3) , (2019) 316-325.
- [2] A. Ardjouni, A. Djoudi, Existence and uniqueness of solutions for nonlinear hybrid implicit Caputo-Hadamard fractional differential equations, Results in Nonlinear Analysis 2 (2019) No. 3, 136-142.
- [3] Jin Bangti, Fractional Differential Equations, Springer, 2021.
- [4] B. Bonilla, A. Kilbas, J. Trujillo: Calculo Fraccionario y Ecuaciones Diferenciales Fraccionarias. UNED Ediciones, Madrid, 2003.
- [5] R. Caponetto, G. Dongola, L. Fortuna, I. Petras: Fractional Order Systems: Modeling and Control Applications. World Scientific, Singapore, 2010.
- [6] K. Diethelm, A.D. Freed, On the solution of nonlinear fractional order differential equations used in the modeling of viscoelasticity, in: F. Keil, W. Mackens, H. Voss, J. Werther (Eds.), Scientific Computing in Chemical Engineering II-Computational Fluid Dynamics, Reaction Engineering and Molecular Properties, Springer-Verlag, Heidelberg (1999) 217-224.
- [7] M.M. Dzhrbashyan, A.B. Nersesyan, Fractional derivatives and the Cauchy problem for differential equations of fractional order. Izv. Akad. Nauk Armyanskoy SSR Mat. 3, (1968) 3Ű28. (In Russian)
- [8] M.I. D’jachenko, P.L. Ul’janov, Mera i integral, Faktorial, Moskva, 1998.
- [9] G.M. Fikhtengol’ts, The Fundamentals of Mathematical Analysis: International Series in Pure and Applied Mathematics, Vol. 2, Pergamon, 2013.
- [10] L. Gaul, P. Klein, S. Kempfle, Damping description involving fractional operators, Mech. Syst. Signal Process. 5 (1991) 81-88.
- [11] W.G. Glockle, T.F. Nonnenmacher, A fractional calculus approach of self-similar
protein dynamics, Biophys. J. 68 (1995) 46-53.
- [12] R. Hilfer, Applications of Fractional Calculus in Physics, World Scientific, Singapore, 2000.
- [13] M. Japundzic, D. Rajter-Ciric, Reaction-advection-diffusion equations with space fractional derivatives and variable coefficients on infinite domain, Fract. Calc. Appl. Anal. 18(4) (2015) 911-950.
- [14] M.T. Jenaliyev, M.I. Ramazanov, M.T. Kosmakova, Zh.M. Tuleutaeva, On the solution to a two-dimensional heat conduction problem in a degenerate domain, Euras. Math. J. 11 (3), (2020) 89-94.
- [15] E. Karapinar, D. Kumar, R. Sakthivel, N.H. Luc and N.H. Can, Identifying the space source term problem for time-space-fractional diffusion equation, Advances in Difference Equations (2020) 2020:557.
- [16] A.A. Kilbas, S.A. Marzan, Nonlinear differential equations with the Caputo fractional derivative in the space of continuously differentiable functions, Differentsial’nye Uravneniya, 41:1 (2005) 82-86.
doi: 10.1007/s10625-005-0137-y
- [17] A.A. Kilbas, H.M. Srivastava, J. J. Trujillo, Theory and Applications of Fractional Differential Equations, in: North-Holland Mathematics Studies, 204, Elsevier Science BV, Amsterdam, 2006.
- [18] M.T. Kosmakova, M.I. Ramazanov, L.Zh. Kasymova, To Solving the Heat Equation with Fractional Load, Lobachevskii Journal of Mathematics, 42(12) (2021) 2854–2866.
- [19] Yamina Laskri, Nasser-eddine Tatar, The critical exponent for an ordinary fractional differential problem, Comp.& Math. with Appl., 59 (2010) 1266Ű1.
- [20] Xian-Fang Li, Approximate solution of linear ordinary differential equations with variable coefficients, Math. Comput. Simul. 75 (2007) 113-125
- [21] A.R. Lyusternik, L.A. Yanpol’skii, Mathematical Analysis: Functions, Limits, Series, Continued Fractions, Pergamon, London, 2014.
- [22] J.A.T. Machado,V. Kiryakova, F. Mainardi, Recent history of fractional calculus. Commun. Nonlinear Sci. Numer. Simul. 16(3) (2011) 1140-1153.
- [23] R. Magin: Fractional Calculus in Bioengineering. Begell House Inc., Redding, CT, 2006.
- [24] F. Mainardi: Fractional Calculus and Waves in Linear Viscoelasticity: An Introduction to Mathematical Models. Imperial College Press, London, 2010.
- [25] F. Mainardi, Fractional calculus: Some basic problems in continuum and statistical mechanics, in: A. Carpinteri, F. Mainardi (Eds.), Fractals and Fractional Calculus in Continuum Mechanics, Springer-Verlag, New York (1997) 291-348.
- [26] M. Mark Meerschaert, Erkan Nane, P. Vellaisamy, Fractional Cauchy problems on bounded domains, Ann. Probab. 37(3) (2009) 979-1007. doi: 10.1214/08-AOP426
- [27] F. Metzler, W. Schick, H.G. Kilian, Nonnenmacher T.F., Relaxation in filled polymers: A fractional calculus approach, J. Chem. Phys. 103 (1995) 7180-7186.
- [28] Ali El Mfadel, Said Melliani, M’hamed Elomari, Existence results for nonlocal Cauchy problem of nonlinear ψ-Caputo type fractional differential equations via topological degree methods, Advances in the Theory of Nonlinear Analysis and its Applications, 6(2) (2022), 270–279.
- [29] K. Mpungu, A.M. Nass, Symmetry Analysis of Time Fractional Convection-reactiondiffusion Equation with a Delay, Results in Nonlinear Analysis 2 (2019) No. 3, 113-124.
- [30] A.M. Nakhushev. Fractional Calculus and its Applications (In Russian). Fizmatlit, Moscow, 2003.
- [31] K.B. Oldham, J. Spanier: Fractional Calculus: Theory and Applications, Differentiation and Integration to Arbitrary Order. Academic Press, Inc., New York-London, 1974
- [32] I. Podlubny, Fractional Differential Equations. An Introduction to Fractional Derivatives, Fractional Differential Equations, Some Methods of Their Solution and Some of Their Applications. Academic Press, SanăDiego-Boston-NewăYork-London-TokyoToronto, 1999.
- [33] Walter Rudin, Principles of mathematical analysis, Library of Congress Cataloging in Publication Data, USA 1976.
- [34] S.G. Samko, A.A. Kilbas, O.I. Marichev, Fractional Integrals and Derivatives. Theory and Applications, Gordon and Breach, 1993.
- [35] Asmae Tajani, El Alaoui Fatima-Zahrae, Boutoulout Ali, Regional Controllability for Caputo Type Semi-Linear Time-Fractional Systems, Advances in the Theory of Nonlinear Analysis and its Applications, 1(1) (2022), 1–13.
- [36] V.V. Vasil’ev, L.A. Simak, Drobnoe ischislenie i approksimacionnye metody v modelirovanii dinamicheskih system, NAN Ukrainy, Kiev, 2008.
- [37] A. Wazwaz, First Course In Integral Equations, A (Second Edition), World Scientific Publishing Company, USA, 2015.
Year 2023,
Volume: 7 Issue: 1, 232 - 242, 31.03.2023
Minzilya Kosmakova
,
Aleksandr Akhmetshin
References
- [1] F.A. Aliev, N.A. Aliev, N.A. Safarova, Transformation of the Mittag-Leffler Function to an Exponential Function and Some of its Applications to Problems with a Fractional Derivative, Appl. and Comp. Math., 18 (3) , (2019) 316-325.
- [2] A. Ardjouni, A. Djoudi, Existence and uniqueness of solutions for nonlinear hybrid implicit Caputo-Hadamard fractional differential equations, Results in Nonlinear Analysis 2 (2019) No. 3, 136-142.
- [3] Jin Bangti, Fractional Differential Equations, Springer, 2021.
- [4] B. Bonilla, A. Kilbas, J. Trujillo: Calculo Fraccionario y Ecuaciones Diferenciales Fraccionarias. UNED Ediciones, Madrid, 2003.
- [5] R. Caponetto, G. Dongola, L. Fortuna, I. Petras: Fractional Order Systems: Modeling and Control Applications. World Scientific, Singapore, 2010.
- [6] K. Diethelm, A.D. Freed, On the solution of nonlinear fractional order differential equations used in the modeling of viscoelasticity, in: F. Keil, W. Mackens, H. Voss, J. Werther (Eds.), Scientific Computing in Chemical Engineering II-Computational Fluid Dynamics, Reaction Engineering and Molecular Properties, Springer-Verlag, Heidelberg (1999) 217-224.
- [7] M.M. Dzhrbashyan, A.B. Nersesyan, Fractional derivatives and the Cauchy problem for differential equations of fractional order. Izv. Akad. Nauk Armyanskoy SSR Mat. 3, (1968) 3Ű28. (In Russian)
- [8] M.I. D’jachenko, P.L. Ul’janov, Mera i integral, Faktorial, Moskva, 1998.
- [9] G.M. Fikhtengol’ts, The Fundamentals of Mathematical Analysis: International Series in Pure and Applied Mathematics, Vol. 2, Pergamon, 2013.
- [10] L. Gaul, P. Klein, S. Kempfle, Damping description involving fractional operators, Mech. Syst. Signal Process. 5 (1991) 81-88.
- [11] W.G. Glockle, T.F. Nonnenmacher, A fractional calculus approach of self-similar
protein dynamics, Biophys. J. 68 (1995) 46-53.
- [12] R. Hilfer, Applications of Fractional Calculus in Physics, World Scientific, Singapore, 2000.
- [13] M. Japundzic, D. Rajter-Ciric, Reaction-advection-diffusion equations with space fractional derivatives and variable coefficients on infinite domain, Fract. Calc. Appl. Anal. 18(4) (2015) 911-950.
- [14] M.T. Jenaliyev, M.I. Ramazanov, M.T. Kosmakova, Zh.M. Tuleutaeva, On the solution to a two-dimensional heat conduction problem in a degenerate domain, Euras. Math. J. 11 (3), (2020) 89-94.
- [15] E. Karapinar, D. Kumar, R. Sakthivel, N.H. Luc and N.H. Can, Identifying the space source term problem for time-space-fractional diffusion equation, Advances in Difference Equations (2020) 2020:557.
- [16] A.A. Kilbas, S.A. Marzan, Nonlinear differential equations with the Caputo fractional derivative in the space of continuously differentiable functions, Differentsial’nye Uravneniya, 41:1 (2005) 82-86.
doi: 10.1007/s10625-005-0137-y
- [17] A.A. Kilbas, H.M. Srivastava, J. J. Trujillo, Theory and Applications of Fractional Differential Equations, in: North-Holland Mathematics Studies, 204, Elsevier Science BV, Amsterdam, 2006.
- [18] M.T. Kosmakova, M.I. Ramazanov, L.Zh. Kasymova, To Solving the Heat Equation with Fractional Load, Lobachevskii Journal of Mathematics, 42(12) (2021) 2854–2866.
- [19] Yamina Laskri, Nasser-eddine Tatar, The critical exponent for an ordinary fractional differential problem, Comp.& Math. with Appl., 59 (2010) 1266Ű1.
- [20] Xian-Fang Li, Approximate solution of linear ordinary differential equations with variable coefficients, Math. Comput. Simul. 75 (2007) 113-125
- [21] A.R. Lyusternik, L.A. Yanpol’skii, Mathematical Analysis: Functions, Limits, Series, Continued Fractions, Pergamon, London, 2014.
- [22] J.A.T. Machado,V. Kiryakova, F. Mainardi, Recent history of fractional calculus. Commun. Nonlinear Sci. Numer. Simul. 16(3) (2011) 1140-1153.
- [23] R. Magin: Fractional Calculus in Bioengineering. Begell House Inc., Redding, CT, 2006.
- [24] F. Mainardi: Fractional Calculus and Waves in Linear Viscoelasticity: An Introduction to Mathematical Models. Imperial College Press, London, 2010.
- [25] F. Mainardi, Fractional calculus: Some basic problems in continuum and statistical mechanics, in: A. Carpinteri, F. Mainardi (Eds.), Fractals and Fractional Calculus in Continuum Mechanics, Springer-Verlag, New York (1997) 291-348.
- [26] M. Mark Meerschaert, Erkan Nane, P. Vellaisamy, Fractional Cauchy problems on bounded domains, Ann. Probab. 37(3) (2009) 979-1007. doi: 10.1214/08-AOP426
- [27] F. Metzler, W. Schick, H.G. Kilian, Nonnenmacher T.F., Relaxation in filled polymers: A fractional calculus approach, J. Chem. Phys. 103 (1995) 7180-7186.
- [28] Ali El Mfadel, Said Melliani, M’hamed Elomari, Existence results for nonlocal Cauchy problem of nonlinear ψ-Caputo type fractional differential equations via topological degree methods, Advances in the Theory of Nonlinear Analysis and its Applications, 6(2) (2022), 270–279.
- [29] K. Mpungu, A.M. Nass, Symmetry Analysis of Time Fractional Convection-reactiondiffusion Equation with a Delay, Results in Nonlinear Analysis 2 (2019) No. 3, 113-124.
- [30] A.M. Nakhushev. Fractional Calculus and its Applications (In Russian). Fizmatlit, Moscow, 2003.
- [31] K.B. Oldham, J. Spanier: Fractional Calculus: Theory and Applications, Differentiation and Integration to Arbitrary Order. Academic Press, Inc., New York-London, 1974
- [32] I. Podlubny, Fractional Differential Equations. An Introduction to Fractional Derivatives, Fractional Differential Equations, Some Methods of Their Solution and Some of Their Applications. Academic Press, SanăDiego-Boston-NewăYork-London-TokyoToronto, 1999.
- [33] Walter Rudin, Principles of mathematical analysis, Library of Congress Cataloging in Publication Data, USA 1976.
- [34] S.G. Samko, A.A. Kilbas, O.I. Marichev, Fractional Integrals and Derivatives. Theory and Applications, Gordon and Breach, 1993.
- [35] Asmae Tajani, El Alaoui Fatima-Zahrae, Boutoulout Ali, Regional Controllability for Caputo Type Semi-Linear Time-Fractional Systems, Advances in the Theory of Nonlinear Analysis and its Applications, 1(1) (2022), 1–13.
- [36] V.V. Vasil’ev, L.A. Simak, Drobnoe ischislenie i approksimacionnye metody v modelirovanii dinamicheskih system, NAN Ukrainy, Kiev, 2008.
- [37] A. Wazwaz, First Course In Integral Equations, A (Second Edition), World Scientific Publishing Company, USA, 2015.