Research Article
BibTex RIS Cite

Triangular functions in solving Weakly Singular Volterra integral equations

Year 2023, Volume: 7 Issue: 1, 195 - 204, 31.03.2023
https://doi.org/10.31197/atnaa.1236577

Abstract

In this paper, we propose the triangular orthogonal functions as a basis functions
for solution of weakly singular Volterra integral equations of the second
kind. Powerful properties of these functions and some operational matrices
are utilized in a direct method to reduce singular integral equation to
some algebraic equations. The presented method does not need any integration
for obtaining the constant coefficients. The method is computationally
attractive, and applications are demonstrated through illustrative examples.

References

  • [1] L. Mach, Wiener Akademie Berlin fur Mathematik und Physik Klasse, 105 (1896), p. 605.
  • [2] M.A. Abdou, A.A. Nasr, On the numerical treatment of the singular integral equation of the second kind. Appl. Math. Comput. 146 (2003), 373380.
  • [3] D.A. Hills, P.A. Kelly, D.N. Dai, A.M. Korsunsky, Solution of Crack Problems. Springer, Dordrecht (1996).
  • [4] X. Jin, L.M. Keer, Q. Wang, A practical method for singular integral equations of the second kind. Eng. Fract. Mech. 75 (2008), 10051014.
  • [5] N. Zeilon, Sur quelques points de la theorie de l’equation integrale d’Abel, Arkiv. Mat. Astr. Fysik. 18 (1924), pp. 1-19.
  • [6] M. Nosrati Sahlan, H. Afshari, Lucas polynomials based spectral methods for solving the fractional order electrohydrodynamics flow model, Communications in Nonlinear Science and Numerical Simulation, 2022.
  • [7] M. Nosrati Sahlan, H. Afshari, J. Alzabut, G. Alobaidi, Using fractional Bernoulli Wavelets for solving fractional diffusion wave equations with initial and boundary conditions, Fractal and Fractional, 2021.
  • [8] C. Schneider, Regularity of the solution to a class of weakly singular Fredholm integral equations of the second kind, Integral Equation Operator Theory. 2 (1979), pp. 62-68.
  • [9] G. R. Ritcher, On weakly singular Fredholm integral equations with displacement kernels, J. Math. Anal. Appl. 55 (1976), pp. 32-48.
  • [10] G. Vainikko, A. Pedas, The properties of solutions of weakly singular integral equations, J. Aust. Math. Soc. Ser. B 22 (1981), pp. 419-430.
  • [11] I. G. Graham, Singularity expansions for the solutions of second kind Fredholm integral equations with weakly singular convolution kernels, J. Integral Equations, 4 (1982), pp. 1-30.
  • [12] C. Schneider, Product integration for weakly singular integral equations, Math. Comput. 36 (1981), pp. 207-213.
  • [13] I.G. Graham, Galerkin methods for second kind integral equations with singularities, Math. Comput. 39 (1982), pp. 519-533.
  • [14] G. Vainikko, P. Uba, A piecewise polynomial approximation to the solution of an integral equation with weakly singular kernel, J. Austral. Math. Soc. Ser. B 22 (1981), pp. 431-438.
  • [15] A. Seifi, Numerical solution of certain Cauchy singular integral equations using a collocation scheme, Advances in Difference Equations, 2020 (2020), Article number: 537.
  • [16] Saira, S. Xiang, G. Liu, Numerical Solution of the Cauchy-Type Singular Integral Equation with a Highly Oscillatory Kernel Function, Mathematics, 7 (10) (2019).
  • [17] K. Maleknejad, A. Hoseingholipour, Numerical treatment of singular integral equation in unbounded domain, International Journal of Computer Mathematics, 98 (8) (2021), 1633-1647.
  • [18] K. Maleknejad, M. Nosrati Sahlan, E. Najafi, Wavelet Galerkin method for solving singular integral equations, Computational and Applied Mathematics 31 (2012), 373-390.
  • [19] M. Nosrati Sahlan, H.R. Marasi, F. Ghahramani, Block-pulse functions approach to numerical solution of Abels integral equation, Cogent Mathematics 2 (1) (2015), 1047111.
  • [20] A. Shahsavaran, M. Paripour, An effective method for approximating the solution of singular integral equations with Cauchy kernel type, CJMS. 7(1)(2018), 102-112.
  • [21] A. Deb, G. Sarkar, A. Sengupta, Triangular orthogonal functions for the analysis of continuous-time systems, New Delhi: Elsevier; 2007.
  • [22] A. Deb, A. Dasgupta , G. Sarkar. A new set of orthogonal functions and its application to the analysis of dynamic systems. J Franklin Inst 2006;343(1):1-26.
  • [23] S.A. Yousefi, Numerical solution of Abel integral equation by using Legendre wavelets. Applied Mathematics and Computation, 175 (2006), 574580.
Year 2023, Volume: 7 Issue: 1, 195 - 204, 31.03.2023
https://doi.org/10.31197/atnaa.1236577

Abstract

References

  • [1] L. Mach, Wiener Akademie Berlin fur Mathematik und Physik Klasse, 105 (1896), p. 605.
  • [2] M.A. Abdou, A.A. Nasr, On the numerical treatment of the singular integral equation of the second kind. Appl. Math. Comput. 146 (2003), 373380.
  • [3] D.A. Hills, P.A. Kelly, D.N. Dai, A.M. Korsunsky, Solution of Crack Problems. Springer, Dordrecht (1996).
  • [4] X. Jin, L.M. Keer, Q. Wang, A practical method for singular integral equations of the second kind. Eng. Fract. Mech. 75 (2008), 10051014.
  • [5] N. Zeilon, Sur quelques points de la theorie de l’equation integrale d’Abel, Arkiv. Mat. Astr. Fysik. 18 (1924), pp. 1-19.
  • [6] M. Nosrati Sahlan, H. Afshari, Lucas polynomials based spectral methods for solving the fractional order electrohydrodynamics flow model, Communications in Nonlinear Science and Numerical Simulation, 2022.
  • [7] M. Nosrati Sahlan, H. Afshari, J. Alzabut, G. Alobaidi, Using fractional Bernoulli Wavelets for solving fractional diffusion wave equations with initial and boundary conditions, Fractal and Fractional, 2021.
  • [8] C. Schneider, Regularity of the solution to a class of weakly singular Fredholm integral equations of the second kind, Integral Equation Operator Theory. 2 (1979), pp. 62-68.
  • [9] G. R. Ritcher, On weakly singular Fredholm integral equations with displacement kernels, J. Math. Anal. Appl. 55 (1976), pp. 32-48.
  • [10] G. Vainikko, A. Pedas, The properties of solutions of weakly singular integral equations, J. Aust. Math. Soc. Ser. B 22 (1981), pp. 419-430.
  • [11] I. G. Graham, Singularity expansions for the solutions of second kind Fredholm integral equations with weakly singular convolution kernels, J. Integral Equations, 4 (1982), pp. 1-30.
  • [12] C. Schneider, Product integration for weakly singular integral equations, Math. Comput. 36 (1981), pp. 207-213.
  • [13] I.G. Graham, Galerkin methods for second kind integral equations with singularities, Math. Comput. 39 (1982), pp. 519-533.
  • [14] G. Vainikko, P. Uba, A piecewise polynomial approximation to the solution of an integral equation with weakly singular kernel, J. Austral. Math. Soc. Ser. B 22 (1981), pp. 431-438.
  • [15] A. Seifi, Numerical solution of certain Cauchy singular integral equations using a collocation scheme, Advances in Difference Equations, 2020 (2020), Article number: 537.
  • [16] Saira, S. Xiang, G. Liu, Numerical Solution of the Cauchy-Type Singular Integral Equation with a Highly Oscillatory Kernel Function, Mathematics, 7 (10) (2019).
  • [17] K. Maleknejad, A. Hoseingholipour, Numerical treatment of singular integral equation in unbounded domain, International Journal of Computer Mathematics, 98 (8) (2021), 1633-1647.
  • [18] K. Maleknejad, M. Nosrati Sahlan, E. Najafi, Wavelet Galerkin method for solving singular integral equations, Computational and Applied Mathematics 31 (2012), 373-390.
  • [19] M. Nosrati Sahlan, H.R. Marasi, F. Ghahramani, Block-pulse functions approach to numerical solution of Abels integral equation, Cogent Mathematics 2 (1) (2015), 1047111.
  • [20] A. Shahsavaran, M. Paripour, An effective method for approximating the solution of singular integral equations with Cauchy kernel type, CJMS. 7(1)(2018), 102-112.
  • [21] A. Deb, G. Sarkar, A. Sengupta, Triangular orthogonal functions for the analysis of continuous-time systems, New Delhi: Elsevier; 2007.
  • [22] A. Deb, A. Dasgupta , G. Sarkar. A new set of orthogonal functions and its application to the analysis of dynamic systems. J Franklin Inst 2006;343(1):1-26.
  • [23] S.A. Yousefi, Numerical solution of Abel integral equation by using Legendre wavelets. Applied Mathematics and Computation, 175 (2006), 574580.
There are 23 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Articles
Authors

Monireh Nosrati This is me 0000-0002-2241-7793

Hojjat Afshari 0000-0003-1149-4336

Publication Date March 31, 2023
Published in Issue Year 2023 Volume: 7 Issue: 1

Cite