BibTex RIS Cite

Rationalization of solvent effects in the solution polymerization of styrene

Year 2016, Volume: 17 Issue: 1, 13 - 23, 05.01.2016
https://doi.org/10.18038/btda.11564

Abstract

Batch solution polymerization of styrene was investigated using seven solvents, namely acetone, chloroform, benzene, toluene, acetonitrile, ethyl acetate, and dimethyl sulphoxide (DMSO), to elicit solvent effects on the monomer conversion. Two separate initiators, benzoyl peroxide (BPO) and its blend with dicyclohexylphthalate (BPO blend), were used to unveil solvent – initiator interaction. The results indicate that monomer conversion was highly influenced by nature of solvent. Acetone gave the highest monomer conversion while toluene gave the least conversion of all seven solvents studied irrespective of the initiator. Correlation of solvent parameters with conversion using linear solvation energy relationship of Kamlet and Taft indicates varying behavior in the two initiators. For benzoyl peroxide, dipolarity/polarizability and Reichardt electrophilicity demonstrate the most positive effect on monomer conversion, while refractive index, dielectric constant and Lewis acid – base interactions between the solvent and initiator show negative effect. On the other hand, for the BPO blend, dipolarity/polarizability, electrophilicity, and Lewis acid – base interactions all show positive influence on conversion, while refractive index and dielectric constant have negative effect.  Acetone is the ideal solvent for solution polymerization of styrene based on monomer conversion and ease of solvent separation.

 

 

References

  • Undri A, Frediani M, Rosi L, Frediani P. Reverse polymerization of waste polystyrene through microwave assisted pyrolysis. J Ana & App Pyrol 2014; 105: 35-42.
  • Gonzalez EJ, Gonzalez B, Calvar N, Dominguez A. Physical properties of binary mixtures of the ionic liquid 1-ethyl-3-methylimidazolium ethyl sulfate with several alcohols at T = (298.15, 313.15, and 328.15) K and atmospheric pressure. J Chem & Eng Data 2007;52: 1641-1648.
  • Hosen MA, Hussain MA, Mjalli FS. Hybrid modeling and kinetic estimation of polystyrene batch reactor using artificial neural network (ANN) approach. Asia-Pacific J Chem Eng 2011;6: 274-287.
  • Hosen MA, Hussain MA, Mjalli FS. Control of polystyrene batch reactors using neural network based model predictive control (NN-MPC): an experimental investigation, Con Eng Prac 2011; 19: 454
  • Hosen MA, Hussain MA, Mjalli FS, Khosravi A, Creighton D, Nahavandi S. Performance analysis of three advanced controllers for polymerization batch reactor: an experimental investigation.Chem Eng Res & Des 2014; 92: 903-916.
  • Hosen MA, Khosravi A, Nahavandi S, Creighton D. Prediction interval-based neural network modeling of polystyrene polymerization reactor – A new perspective of data-based modeling. Chem Eng Res & Des 2014; http://dx.doi.org/10.1016/j. cherd.2014.02.016.
  • Vasco de Toledo, EC, Martini CRF, Maciel, MRW, Filho RM. Process intensification for high operational performance target: authrefrigerated CSTR polymerization reactor. Com & Chem Eng ; 29: 1447-1455.
  • Gharaghani M, Abedini H, Parvazinia M. Dynamic simulation and control of auto-refrigerated CSTR and tubular reactor for bulk styrene polymerization. Chem Eng Res & Design 2012; 90: 1540
  • Goto A, Fukuda T. Determination of the activation rate constants of alkyl halide initiators for atom transfer radical polymerization. Mac Rapid Comm 1999; 20: 633-636.
  • Ozkan G, Hapoglu H, Alpbaz M. Generalized predictive control of optimal temperature profiles in a polystyrene polymerization reactor. Chem Eng & pro: Process inten 1998; 37: 125-139.
  • Ozkan G, Tekin O, Hapoglu H. Application of experimental non-linear control based on generic algorithm to a polymerization reactor. K J of Chem Eng 2009; 26: 1201-1207.
  • Altinten A, Erdogan S, Hapoglu H, Alpbaz M. Control of a polymerization reactor by fuzzy control method with generic algorithm. Comp & Chem Eng 2003; 27: 1031-1040.
  • Altinten A, Erdogan S, Hapoglu H, Aliev F, Alpbaz M. Application of fuzzy control method with generic algorithm to a polymerization reactor at constant set point. Chem Eng Res & Des2006; 84: 1018.
  • Altinten A, Ketevanlioglu F, Erdogan S, Hapoglu H, Alpbaz M. Self-tuning PID control of jacketed batch polystyrene reactor using generic algorithm. Chem Eng J 2008; 138: 490-497.
  • Ghasem NM, Sata SA, Hussain MA. Temperature control of a bench-scale batch polymerization reactor for polystyrene production. Chem Eng & Tech 2007; 30:1193-1202.
  • Vicevic M, Novakovic K, Boodhoo KVK, Morris AJ. Kinetics of styrene free radical polymerization in the spinning disc reactor. Chem Eng J 2008; 135:78-82.
  • Noor RAM, Ahmed Z, Don MM, Uzir MH. Modeling and control of different types of polymerization processes using neural networks technique: a review. Can J Chem Eng 2010;. 88: 1065
  • Novakovic K, Martin EB, Morris AJ. Modeling of the free radical polymerization of styrene with benzoyl peroxide as initiator. Euro Sym Com Aided Proc Eng 2003; 815-820.
  • Hosen MA, Hussain MA. Optimization and control of polystyrene batch reactor using hybrid based model. In: A. K. Iftekhar, S. Rajagopalan (Eds.), Comp Aided Chem Eng 2012; 31: 760-764.
  • Mohammadi Y, Pakdel AS, Saeb MR, Boodhoo K. Monte Carlo simulation of free radical polymerization of styrene in a spinning disc reactor. Chem Eng J 2014; 247: 231-240.
  • Kurochin SA, Silant’ev MA, Perepelitsyna EO, Grachev VP. Molecular oxygen as a regulator of primary chain length of branched polymers formed in 3D radical polymerization. Oxidative polymerization of styrene. Polymer 2013; 54: 31-42.
  • Bahring S, Kim DS, Duedal T, Lynch VM, Nielsen KA, Jeppesen JO, Sessler JL. Use of solvent to regulate the degree of polymerization in weakly associated supramolecular oligomers, Chem. Commun. 50 (2014) 5497-5499.
  • Kehinde AJ, Usman MA, Owolabi RU. Solvent-initiator compatibility and sensitivity of conversion of styrene homo-polymerization. J Poly Eng 2013; 33: 775-783.
  • Schleicher JC, Scurto AM. Kinetics and solvent effects in the synthesis of ionic liquids: imidazolium. Green Chem 2009; 11: 694 – 703.
  • Reichardt C. Solvent and solvent effects in organic chemistry, 3rd ed., Wiley-VCH, Weinheim, Germany, 2003.
  • Lledos A, Duran M, Bertran J, Abboud JLM. Analysis of solvent 1991;113: 2873-2879.
  • Bini R, Chiappe CV,Mestre L. Pomellic CS, Welton T. A rationalization of the solvent effect on the Diels–Alder reaction in ionic liquids using multiparameter linear solvation energy relationships. Org. Biomol. Chem 2008; 6: 2522–2529.
  • Siani G, Angelini G, De Maria P, Fontana A, Pierini M, Solvent effects on the rate of the keto– enol interconversion of 2-nitrocyclohexanone, Org. Biomol. Chem 2008; 6: 4236–4241.
  • Ivanovici S, Rill C, Koch T, Puchberger M, Kickelbick G. Solvent effects in the formation of hybrid materials based on titanium alkoxide-polysiloxane precursors. New J. Chem 2008; 32: 1243–
  • Horn M, Matyjaszewski K. Solvent Effects on the Activation Rate Constant in Atom Transfer Radical Polymerization. Macromol 2013; 46: 3350−3357.
  • Arai K, Saito S. Simulation model for the rate of bulk polymerization over the complete course of reaction. J Chem Eng 1976; 9: 302-313.
  • Arai K, Hiromi Y, Shozaburo S, Eui S, Takashi Y. A kinetic study of bulk thermal polymerization of styrene. J Chem Eng Jap 1986; 19: 413-419.
  • Kamlet MJ, Taft RW. The solvatochromic comparison method. 1. The beta-scale of solvent hydrogen-bond acceptor (HBA) basicities. J Am Chem Soc 1976; 98:377-383.
  • Taft RW, Kamlet MJ. The solvatochromic comparison method. 2. The alpha-scale of solvent hydrogen-bond donor (HBD) acidities. J Am Chem Soc 1976; 98: 2886-2894.
  • Pedro MM, Claudia GA, Graciela GF, Leonor RV. A comparison of non-specific solvent scales. Degree of agreement of microscopic polarity values obtained by different measurement methods, Arkivoc 2007; 16: 266-280.
  • Burdick and Jackson. Solvent refractive index info. Retrieved April 19, 2013, http://macro.lsu.edu/howto/solvents/Refractive%20Index.htm.
  • Kostag, M, Liebert T, Heinze T. Acetone – based cellulose solvent, Macromolecular Rap Comm ; doi:10.1002/marc.201400211.
  • D. Lide. CRC Handbook of chemistry and physics, 88th edn., CRC Press, Boca Raton, 2007.
  • Slater CS, Savelski MJ. A method to characterize the greenness of solvents used in pharmaceutical manufacture, J Environ Sc Health Part A 2007;42: 1595-1605.

RATIONALIZATION OF SOLVENT EFFECTS IN THE SOLUTION POLYMERIZATION OF STYRENE

Year 2016, Volume: 17 Issue: 1, 13 - 23, 05.01.2016
https://doi.org/10.18038/btda.11564

Abstract

References

  • Undri A, Frediani M, Rosi L, Frediani P. Reverse polymerization of waste polystyrene through microwave assisted pyrolysis. J Ana & App Pyrol 2014; 105: 35-42.
  • Gonzalez EJ, Gonzalez B, Calvar N, Dominguez A. Physical properties of binary mixtures of the ionic liquid 1-ethyl-3-methylimidazolium ethyl sulfate with several alcohols at T = (298.15, 313.15, and 328.15) K and atmospheric pressure. J Chem & Eng Data 2007;52: 1641-1648.
  • Hosen MA, Hussain MA, Mjalli FS. Hybrid modeling and kinetic estimation of polystyrene batch reactor using artificial neural network (ANN) approach. Asia-Pacific J Chem Eng 2011;6: 274-287.
  • Hosen MA, Hussain MA, Mjalli FS. Control of polystyrene batch reactors using neural network based model predictive control (NN-MPC): an experimental investigation, Con Eng Prac 2011; 19: 454
  • Hosen MA, Hussain MA, Mjalli FS, Khosravi A, Creighton D, Nahavandi S. Performance analysis of three advanced controllers for polymerization batch reactor: an experimental investigation.Chem Eng Res & Des 2014; 92: 903-916.
  • Hosen MA, Khosravi A, Nahavandi S, Creighton D. Prediction interval-based neural network modeling of polystyrene polymerization reactor – A new perspective of data-based modeling. Chem Eng Res & Des 2014; http://dx.doi.org/10.1016/j. cherd.2014.02.016.
  • Vasco de Toledo, EC, Martini CRF, Maciel, MRW, Filho RM. Process intensification for high operational performance target: authrefrigerated CSTR polymerization reactor. Com & Chem Eng ; 29: 1447-1455.
  • Gharaghani M, Abedini H, Parvazinia M. Dynamic simulation and control of auto-refrigerated CSTR and tubular reactor for bulk styrene polymerization. Chem Eng Res & Design 2012; 90: 1540
  • Goto A, Fukuda T. Determination of the activation rate constants of alkyl halide initiators for atom transfer radical polymerization. Mac Rapid Comm 1999; 20: 633-636.
  • Ozkan G, Hapoglu H, Alpbaz M. Generalized predictive control of optimal temperature profiles in a polystyrene polymerization reactor. Chem Eng & pro: Process inten 1998; 37: 125-139.
  • Ozkan G, Tekin O, Hapoglu H. Application of experimental non-linear control based on generic algorithm to a polymerization reactor. K J of Chem Eng 2009; 26: 1201-1207.
  • Altinten A, Erdogan S, Hapoglu H, Alpbaz M. Control of a polymerization reactor by fuzzy control method with generic algorithm. Comp & Chem Eng 2003; 27: 1031-1040.
  • Altinten A, Erdogan S, Hapoglu H, Aliev F, Alpbaz M. Application of fuzzy control method with generic algorithm to a polymerization reactor at constant set point. Chem Eng Res & Des2006; 84: 1018.
  • Altinten A, Ketevanlioglu F, Erdogan S, Hapoglu H, Alpbaz M. Self-tuning PID control of jacketed batch polystyrene reactor using generic algorithm. Chem Eng J 2008; 138: 490-497.
  • Ghasem NM, Sata SA, Hussain MA. Temperature control of a bench-scale batch polymerization reactor for polystyrene production. Chem Eng & Tech 2007; 30:1193-1202.
  • Vicevic M, Novakovic K, Boodhoo KVK, Morris AJ. Kinetics of styrene free radical polymerization in the spinning disc reactor. Chem Eng J 2008; 135:78-82.
  • Noor RAM, Ahmed Z, Don MM, Uzir MH. Modeling and control of different types of polymerization processes using neural networks technique: a review. Can J Chem Eng 2010;. 88: 1065
  • Novakovic K, Martin EB, Morris AJ. Modeling of the free radical polymerization of styrene with benzoyl peroxide as initiator. Euro Sym Com Aided Proc Eng 2003; 815-820.
  • Hosen MA, Hussain MA. Optimization and control of polystyrene batch reactor using hybrid based model. In: A. K. Iftekhar, S. Rajagopalan (Eds.), Comp Aided Chem Eng 2012; 31: 760-764.
  • Mohammadi Y, Pakdel AS, Saeb MR, Boodhoo K. Monte Carlo simulation of free radical polymerization of styrene in a spinning disc reactor. Chem Eng J 2014; 247: 231-240.
  • Kurochin SA, Silant’ev MA, Perepelitsyna EO, Grachev VP. Molecular oxygen as a regulator of primary chain length of branched polymers formed in 3D radical polymerization. Oxidative polymerization of styrene. Polymer 2013; 54: 31-42.
  • Bahring S, Kim DS, Duedal T, Lynch VM, Nielsen KA, Jeppesen JO, Sessler JL. Use of solvent to regulate the degree of polymerization in weakly associated supramolecular oligomers, Chem. Commun. 50 (2014) 5497-5499.
  • Kehinde AJ, Usman MA, Owolabi RU. Solvent-initiator compatibility and sensitivity of conversion of styrene homo-polymerization. J Poly Eng 2013; 33: 775-783.
  • Schleicher JC, Scurto AM. Kinetics and solvent effects in the synthesis of ionic liquids: imidazolium. Green Chem 2009; 11: 694 – 703.
  • Reichardt C. Solvent and solvent effects in organic chemistry, 3rd ed., Wiley-VCH, Weinheim, Germany, 2003.
  • Lledos A, Duran M, Bertran J, Abboud JLM. Analysis of solvent 1991;113: 2873-2879.
  • Bini R, Chiappe CV,Mestre L. Pomellic CS, Welton T. A rationalization of the solvent effect on the Diels–Alder reaction in ionic liquids using multiparameter linear solvation energy relationships. Org. Biomol. Chem 2008; 6: 2522–2529.
  • Siani G, Angelini G, De Maria P, Fontana A, Pierini M, Solvent effects on the rate of the keto– enol interconversion of 2-nitrocyclohexanone, Org. Biomol. Chem 2008; 6: 4236–4241.
  • Ivanovici S, Rill C, Koch T, Puchberger M, Kickelbick G. Solvent effects in the formation of hybrid materials based on titanium alkoxide-polysiloxane precursors. New J. Chem 2008; 32: 1243–
  • Horn M, Matyjaszewski K. Solvent Effects on the Activation Rate Constant in Atom Transfer Radical Polymerization. Macromol 2013; 46: 3350−3357.
  • Arai K, Saito S. Simulation model for the rate of bulk polymerization over the complete course of reaction. J Chem Eng 1976; 9: 302-313.
  • Arai K, Hiromi Y, Shozaburo S, Eui S, Takashi Y. A kinetic study of bulk thermal polymerization of styrene. J Chem Eng Jap 1986; 19: 413-419.
  • Kamlet MJ, Taft RW. The solvatochromic comparison method. 1. The beta-scale of solvent hydrogen-bond acceptor (HBA) basicities. J Am Chem Soc 1976; 98:377-383.
  • Taft RW, Kamlet MJ. The solvatochromic comparison method. 2. The alpha-scale of solvent hydrogen-bond donor (HBD) acidities. J Am Chem Soc 1976; 98: 2886-2894.
  • Pedro MM, Claudia GA, Graciela GF, Leonor RV. A comparison of non-specific solvent scales. Degree of agreement of microscopic polarity values obtained by different measurement methods, Arkivoc 2007; 16: 266-280.
  • Burdick and Jackson. Solvent refractive index info. Retrieved April 19, 2013, http://macro.lsu.edu/howto/solvents/Refractive%20Index.htm.
  • Kostag, M, Liebert T, Heinze T. Acetone – based cellulose solvent, Macromolecular Rap Comm ; doi:10.1002/marc.201400211.
  • D. Lide. CRC Handbook of chemistry and physics, 88th edn., CRC Press, Boca Raton, 2007.
  • Slater CS, Savelski MJ. A method to characterize the greenness of solvents used in pharmaceutical manufacture, J Environ Sc Health Part A 2007;42: 1595-1605.
There are 39 citations in total.

Details

Journal Section Articles
Authors

Rasheed Uthman Owolabi

Mohammed Awaal Usman This is me

Chuks Isanbor This is me

Abiola John Kehinde This is me

Publication Date January 5, 2016
Published in Issue Year 2016 Volume: 17 Issue: 1

Cite

APA Owolabi, R. U., Usman, M. A., Isanbor, C., Kehinde, A. J. (2016). Rationalization of solvent effects in the solution polymerization of styrene. Anadolu University Journal of Science and Technology A - Applied Sciences and Engineering, 17(1), 13-23. https://doi.org/10.18038/btda.11564
AMA Owolabi RU, Usman MA, Isanbor C, Kehinde AJ. Rationalization of solvent effects in the solution polymerization of styrene. AUJST-A. June 2016;17(1):13-23. doi:10.18038/btda.11564
Chicago Owolabi, Rasheed Uthman, Mohammed Awaal Usman, Chuks Isanbor, and Abiola John Kehinde. “Rationalization of Solvent Effects in the Solution Polymerization of Styrene”. Anadolu University Journal of Science and Technology A - Applied Sciences and Engineering 17, no. 1 (June 2016): 13-23. https://doi.org/10.18038/btda.11564.
EndNote Owolabi RU, Usman MA, Isanbor C, Kehinde AJ (June 1, 2016) Rationalization of solvent effects in the solution polymerization of styrene. Anadolu University Journal of Science and Technology A - Applied Sciences and Engineering 17 1 13–23.
IEEE R. U. Owolabi, M. A. Usman, C. Isanbor, and A. J. Kehinde, “Rationalization of solvent effects in the solution polymerization of styrene”, AUJST-A, vol. 17, no. 1, pp. 13–23, 2016, doi: 10.18038/btda.11564.
ISNAD Owolabi, Rasheed Uthman et al. “Rationalization of Solvent Effects in the Solution Polymerization of Styrene”. Anadolu University Journal of Science and Technology A - Applied Sciences and Engineering 17/1 (June 2016), 13-23. https://doi.org/10.18038/btda.11564.
JAMA Owolabi RU, Usman MA, Isanbor C, Kehinde AJ. Rationalization of solvent effects in the solution polymerization of styrene. AUJST-A. 2016;17:13–23.
MLA Owolabi, Rasheed Uthman et al. “Rationalization of Solvent Effects in the Solution Polymerization of Styrene”. Anadolu University Journal of Science and Technology A - Applied Sciences and Engineering, vol. 17, no. 1, 2016, pp. 13-23, doi:10.18038/btda.11564.
Vancouver Owolabi RU, Usman MA, Isanbor C, Kehinde AJ. Rationalization of solvent effects in the solution polymerization of styrene. AUJST-A. 2016;17(1):13-2.