Research Article
BibTex RIS Cite
Year 2016, Volume: 17 Issue: 4, 724 - 734, 01.12.2016
https://doi.org/10.18038/aubtda.266863

Abstract

References

  • [1] Shaobin W, Yuelian P. Natural zeolites as effective adsorbents in water and wastewater treatment. Chem Eng J 2010; 156: 11-24.
  • [2] Taylor W.H. The structure of analcite (NaAlSi2O6.H2O). Z Kristallogr 1930; 74: 1-19.
  • [3] Hurlbut CS, Klein C. Manual of Mineralogy, 20th ed. New York, NY, USA: Wiley, 1985.
  • [4] Calleri M, Ferraris G. Struttura dellíanalcime: NaAlSi2O6•H2O. Atti Accad Sci Tolrino 1964; 98: 821- 846.
  • [5] Knowles CR, Rinaldi FF, Smith JV. Refinement of the crystal structure of analcime. Indian Mineral 1965; 6: 127–140.
  • [6] Ferraris G, Jones DW, Yerkess J. A neutron-diffraction study of the crystal structure of analcime, NaAlSi206.H20. Z Kristallogr 1972; 135: 240–252.
  • [7] Pechar F. Crystal-chemistry of analcime. Acta Univ Carol Geol 1989; 4: 469-487.
  • [8] Mazzi F, Galli E. Is each analcime different? Am Mineral 1978; 63: 448–460.
  • [9] Armbruster T, Gunter, ME. Crystal structures of natural zeoltes, Natural Zeolites: Occurrence, Properties, Applications. In: Bish DL, Ming DW, editors. Mineralogical Society of America Reviews in Mineralogy and Geochemistry, Washington, DC USA, 2001, pp. 1-57.
  • [10] Hovis GL, Roux J, Rodrigues E. Thermodynamic and structural behavior of analcime - leucite analogue systems. Am Mineral 2002; 87: 523-532.
  • [11] Semmens M, Seyfarth M. The selectivity of clinoptilolite for certain heavy metals. In: Sand, LB, Mumpton FA, editors. Natural Zeolites: Occurrence, Properties and Use, New York, NY, USA: Pergamon Press; 1978. pp. 517-519.
  • [12] Ping Y. Use of Natural Zeolites in the Recovery of Metals. Kokkola: Central Ostrobothnia University of Applied Sciences Press, 2010.
  • [13] Barrer R. Ion-exchange and ion-sieve processes in crystalline zeolites. J Chem Soc 1950; 481: 2341-2348.
  • [14] Barrer R, Hinds L. Ion-exchange in crystals of analcite and leucite. J Chem Soc 1953; 386: 1877-1889.
  • [15] Sudaporn T, Kunwadee R, Alan D. Ion exchange of Cu2+, Ni2+, Pb2+ and Zn2+ in analcime (ANA) synthesized from Thai perlite Micropor Mesopor Mater 2005; 79: 171-175.
  • [16] Jagannadha RM, and Gopal KB. Naturally Engineered Analcime for Water Treatment Process and its Calorimetric Properties. In: NCKITE 2015 National Conference on Knowledge; 10-11 April 2015; Raipur, Chhattisgarh, India: NCKITE. Pp. 160-166.
  • [17] Chipera SJ, Bish DL. Rehydration kinetics of a natural analcime. Eur J Mineral 2010; 22: 787-795.
  • [18] Breck DW. Zeolite Molecular Sieves. New York, NY, USA: John Wiley and Sons, 1974.
  • [19] Ataman G, Gündoğdu N. Analcimic zones in the Tertiary of Anatolia and their geological positions. Sediment Geol 1982; 31: 89-99.
  • [20] Esenli F, Özpeker I. Gördes çevresindeki neojen havzasının zeolitik diyajenezi ve höylandit-klinoptilolitlerin mineralojisi, Türkiye Jeoloji Kurultayı Bülteni, 1993. pp. 8-18.
  • [21] Gündoğdu MN, Yalçın H, Temel A, Clauer N. Geological, mineralogical and geochemical characteristics of zeolite deposits associated with borates in the Bigadiç, Emet ve Kırka Neeogene Lacustrine basins, Western Turkey. Miner Deposit 1996; 31: 492-513.
  • [22] Esenli F, Uz B, Suner F, Esenli V, Ece ÖI, Kumbasar I. Zeolitization of tuffaceous rocks in the Keşan region, Thrace, Turkey. Geologia 2005; 58: 51-161.
  • [23] Brunauer S, Emmett PH, Teller E. Adsorption of gases in multimolecular layers, J Am Chem Soc 1938; 60: 309-319.
  • [24] Xing F, Ding H, Feng NQ. The research about activated processing of improving adsorption capacity of natural zeolite. Conservation and Utilization of Mineral Resources 2000; 2: 17-21.
  • [25] Treacy ММJ, Нiggins JВ. Collection of Simulated XRD Powder Patterns for Zeolites, 5th ed. Oxford, UK: Elsevier, 2007.
  • [26] Özen S, Göncüoğlu MC. Origin of analcime in the Neogene Arikli Tuff, Biga Peninsula, NW Turkey. N Jb Miner Abh 2012; 189: 21-34.
  • [27] McClune WF. Powder diffraction file: inorganic phases. New York, NY, USA: Joint Comittee on Powder Diffraction Standards, 1991.
  • [28] Ates A, Hardacre C. The effect of various treatment conditions on natural zeolites: Ion exchange, acidic, thermal and steam treatments, J Colloid Interf Sci 2012; 372: 130-140.
  • [29] Ahmad ZB, Dyer A. Ion exchange in near-homoionic ferrierites. In: Kallo D, Sherry HS, editors. Occurrence, Properties, and Utilization of Natural Zeolites. Budapest, Hungary: Akademiai Kiada, 1988. pp. 431-448.
  • [30] King EG. Low temperature heat capacity and entropy at 298.16 K of analcite. J Amer Chem Soc 1955; 77: 2192-2193.
  • [31] King EG, Weller WW. Low temperature heat capacity and entropy at 298.15 K of some sodium- and calcium-aluminum silicates. U.S. Bureau of Mines, Report of Investigations, 1961.
  • [32] Robie RA, Hemingway BS, Fisher J.R. Thermodynamic properties of minerals and related substances at 298.15 K and 1 bar (105 Pascals) pressure and at higher temperatures. U.S. Geological Survey Bulletin, 1979, pp. 1452-1456.
  • [33] Helgeson HC, Delany JM, Nesbitt HW, Bird DK. Summary and critique of the thermodynamic properties of rock-forming minerals. Am J Sci 1978; 278A: 1-229.
  • [34] Johnson GK, Flotow HE, O’Hare PAG, Wise WS. Thermodynamic studies of zeolites: analcime and dehydrated analcime. Am Mineral 1982; 67: 736-748.
  • [35] Line CM. The behavior of water in analcime, NaAlSi2O6•H2O. PhD, Department of Earth Science, University of Cambridge, UK, 1995.
  • [36] Line CM, Putnis A, Putnis C, Giampaolo C. The dehydration kinetics and microtexture of analcime from two parageneses. Am Mineral 1995; 80: 268–279.
  • [37] Ogorodova LP, Kiseleva IA, Melchakova LV, Belitskii IA, Fursenko BA. Enthalpies of formation and dehydration of natural analcime. Geochem Int 1996; 34: 980-984.
  • [38] Kim Y, Kirkpatrick RJ. High-temperature multi-nuclear NMR investigation of analcime. Am Mineral 1998; 83: 339–347.
  • [39] Bish DL, Carey JW. Thermal behavior of natural zeolites. In: Bish DL, Ming DW, editors. Natural Zeolites: Occurrence, Properties, Applications. Mineralogical Society of America, Washington DC: 2001, pp. 403–452.
  • [40] Mumpton FA. Natural Zeolites, In: Mumpton FA, editor. Mineralogy and Geology of Natural Zeolites. New York, NY, USA: 1977. pp. 1-18.
  • [41] Munakata K. Adsorption of Nobele Gases on Siver-mordenite. J Nucl Sci Technol 2003; 40: 695-697.
  • [42] Elaiopoulos K, Perraki Th, Grigoropoulou E. Mineralogical study and porosimetry measurements of zeolites from Scaloma area, Thrace, Greece. Micropor Mesopor Mater 2008; 112:441-449.
  • [43] Elaiopoulos K, Perraki Th, Grigoropoulou E. Monitoring the effect of hydrothermal treatments on the structure of a natural zeolite through a combined XRD, FTIR, SEM and N2-porosimetry analysis. Micropor Mesopor Mater 2010; 134: 29-43.
  • [44] Akimkhan MA. Structural and Ion-Exchange Properties of Natural Zeolite. In: Ayben K, editor. Ion Exchange Technologies. In Tech press, 2012. pp. 261-282.

INVESTIGATION OF THERMAL AND STRUCTURAL PROPERTIES OF NATURAL AND ION-EXCHANGED ANALCIME

Year 2016, Volume: 17 Issue: 4, 724 - 734, 01.12.2016
https://doi.org/10.18038/aubtda.266863

Abstract



In this study, the thermal and structural properties of natural analcime
zeolite
obtained from the Çanakkale-Küçükkuyu-Ayvacık region and its cationic forms (HA, FeA, AgA and
CuA)
were characterized using a range of methods. These included X-ray
fluorescence (XRF), X-ray diffraction (XRD),
thermogravimetric analysis (TG), differential thermogravimetric analysis (DTG),
differential thermal analysis (DTA) and
specific surface area measurement techniques.
Cationic forms were
prepared by using 1 M HCl, 1 M Fe(NO3)3.9H2O,
1 M AgNO3 and 1 M Cu(NO3)2.3H2O
solutions.
Quantitative XRD analysis showed that the natural zeolite was mainly
composed of analcime accompanied by quartz, feldspar, montmorillonite and
amorphous substances. AgA and HA samples showed different thermal and
structural behaviors due to their rearranged crystal structure and chemical
composition.
Adsorption properties of samples were determined by using
adsorption isotherms and specific surface areas obtained by the
Brunauer-Emmet-Teller (BET) method. The specific surface areas of the
ion-exchanged analcime zeolites were found to be higher in comparison to
natural analcime. Among all the modified forms, it was found that the H-form of
the analcime sample has the largest surface area HA (41.88 m2/g).

References

  • [1] Shaobin W, Yuelian P. Natural zeolites as effective adsorbents in water and wastewater treatment. Chem Eng J 2010; 156: 11-24.
  • [2] Taylor W.H. The structure of analcite (NaAlSi2O6.H2O). Z Kristallogr 1930; 74: 1-19.
  • [3] Hurlbut CS, Klein C. Manual of Mineralogy, 20th ed. New York, NY, USA: Wiley, 1985.
  • [4] Calleri M, Ferraris G. Struttura dellíanalcime: NaAlSi2O6•H2O. Atti Accad Sci Tolrino 1964; 98: 821- 846.
  • [5] Knowles CR, Rinaldi FF, Smith JV. Refinement of the crystal structure of analcime. Indian Mineral 1965; 6: 127–140.
  • [6] Ferraris G, Jones DW, Yerkess J. A neutron-diffraction study of the crystal structure of analcime, NaAlSi206.H20. Z Kristallogr 1972; 135: 240–252.
  • [7] Pechar F. Crystal-chemistry of analcime. Acta Univ Carol Geol 1989; 4: 469-487.
  • [8] Mazzi F, Galli E. Is each analcime different? Am Mineral 1978; 63: 448–460.
  • [9] Armbruster T, Gunter, ME. Crystal structures of natural zeoltes, Natural Zeolites: Occurrence, Properties, Applications. In: Bish DL, Ming DW, editors. Mineralogical Society of America Reviews in Mineralogy and Geochemistry, Washington, DC USA, 2001, pp. 1-57.
  • [10] Hovis GL, Roux J, Rodrigues E. Thermodynamic and structural behavior of analcime - leucite analogue systems. Am Mineral 2002; 87: 523-532.
  • [11] Semmens M, Seyfarth M. The selectivity of clinoptilolite for certain heavy metals. In: Sand, LB, Mumpton FA, editors. Natural Zeolites: Occurrence, Properties and Use, New York, NY, USA: Pergamon Press; 1978. pp. 517-519.
  • [12] Ping Y. Use of Natural Zeolites in the Recovery of Metals. Kokkola: Central Ostrobothnia University of Applied Sciences Press, 2010.
  • [13] Barrer R. Ion-exchange and ion-sieve processes in crystalline zeolites. J Chem Soc 1950; 481: 2341-2348.
  • [14] Barrer R, Hinds L. Ion-exchange in crystals of analcite and leucite. J Chem Soc 1953; 386: 1877-1889.
  • [15] Sudaporn T, Kunwadee R, Alan D. Ion exchange of Cu2+, Ni2+, Pb2+ and Zn2+ in analcime (ANA) synthesized from Thai perlite Micropor Mesopor Mater 2005; 79: 171-175.
  • [16] Jagannadha RM, and Gopal KB. Naturally Engineered Analcime for Water Treatment Process and its Calorimetric Properties. In: NCKITE 2015 National Conference on Knowledge; 10-11 April 2015; Raipur, Chhattisgarh, India: NCKITE. Pp. 160-166.
  • [17] Chipera SJ, Bish DL. Rehydration kinetics of a natural analcime. Eur J Mineral 2010; 22: 787-795.
  • [18] Breck DW. Zeolite Molecular Sieves. New York, NY, USA: John Wiley and Sons, 1974.
  • [19] Ataman G, Gündoğdu N. Analcimic zones in the Tertiary of Anatolia and their geological positions. Sediment Geol 1982; 31: 89-99.
  • [20] Esenli F, Özpeker I. Gördes çevresindeki neojen havzasının zeolitik diyajenezi ve höylandit-klinoptilolitlerin mineralojisi, Türkiye Jeoloji Kurultayı Bülteni, 1993. pp. 8-18.
  • [21] Gündoğdu MN, Yalçın H, Temel A, Clauer N. Geological, mineralogical and geochemical characteristics of zeolite deposits associated with borates in the Bigadiç, Emet ve Kırka Neeogene Lacustrine basins, Western Turkey. Miner Deposit 1996; 31: 492-513.
  • [22] Esenli F, Uz B, Suner F, Esenli V, Ece ÖI, Kumbasar I. Zeolitization of tuffaceous rocks in the Keşan region, Thrace, Turkey. Geologia 2005; 58: 51-161.
  • [23] Brunauer S, Emmett PH, Teller E. Adsorption of gases in multimolecular layers, J Am Chem Soc 1938; 60: 309-319.
  • [24] Xing F, Ding H, Feng NQ. The research about activated processing of improving adsorption capacity of natural zeolite. Conservation and Utilization of Mineral Resources 2000; 2: 17-21.
  • [25] Treacy ММJ, Нiggins JВ. Collection of Simulated XRD Powder Patterns for Zeolites, 5th ed. Oxford, UK: Elsevier, 2007.
  • [26] Özen S, Göncüoğlu MC. Origin of analcime in the Neogene Arikli Tuff, Biga Peninsula, NW Turkey. N Jb Miner Abh 2012; 189: 21-34.
  • [27] McClune WF. Powder diffraction file: inorganic phases. New York, NY, USA: Joint Comittee on Powder Diffraction Standards, 1991.
  • [28] Ates A, Hardacre C. The effect of various treatment conditions on natural zeolites: Ion exchange, acidic, thermal and steam treatments, J Colloid Interf Sci 2012; 372: 130-140.
  • [29] Ahmad ZB, Dyer A. Ion exchange in near-homoionic ferrierites. In: Kallo D, Sherry HS, editors. Occurrence, Properties, and Utilization of Natural Zeolites. Budapest, Hungary: Akademiai Kiada, 1988. pp. 431-448.
  • [30] King EG. Low temperature heat capacity and entropy at 298.16 K of analcite. J Amer Chem Soc 1955; 77: 2192-2193.
  • [31] King EG, Weller WW. Low temperature heat capacity and entropy at 298.15 K of some sodium- and calcium-aluminum silicates. U.S. Bureau of Mines, Report of Investigations, 1961.
  • [32] Robie RA, Hemingway BS, Fisher J.R. Thermodynamic properties of minerals and related substances at 298.15 K and 1 bar (105 Pascals) pressure and at higher temperatures. U.S. Geological Survey Bulletin, 1979, pp. 1452-1456.
  • [33] Helgeson HC, Delany JM, Nesbitt HW, Bird DK. Summary and critique of the thermodynamic properties of rock-forming minerals. Am J Sci 1978; 278A: 1-229.
  • [34] Johnson GK, Flotow HE, O’Hare PAG, Wise WS. Thermodynamic studies of zeolites: analcime and dehydrated analcime. Am Mineral 1982; 67: 736-748.
  • [35] Line CM. The behavior of water in analcime, NaAlSi2O6•H2O. PhD, Department of Earth Science, University of Cambridge, UK, 1995.
  • [36] Line CM, Putnis A, Putnis C, Giampaolo C. The dehydration kinetics and microtexture of analcime from two parageneses. Am Mineral 1995; 80: 268–279.
  • [37] Ogorodova LP, Kiseleva IA, Melchakova LV, Belitskii IA, Fursenko BA. Enthalpies of formation and dehydration of natural analcime. Geochem Int 1996; 34: 980-984.
  • [38] Kim Y, Kirkpatrick RJ. High-temperature multi-nuclear NMR investigation of analcime. Am Mineral 1998; 83: 339–347.
  • [39] Bish DL, Carey JW. Thermal behavior of natural zeolites. In: Bish DL, Ming DW, editors. Natural Zeolites: Occurrence, Properties, Applications. Mineralogical Society of America, Washington DC: 2001, pp. 403–452.
  • [40] Mumpton FA. Natural Zeolites, In: Mumpton FA, editor. Mineralogy and Geology of Natural Zeolites. New York, NY, USA: 1977. pp. 1-18.
  • [41] Munakata K. Adsorption of Nobele Gases on Siver-mordenite. J Nucl Sci Technol 2003; 40: 695-697.
  • [42] Elaiopoulos K, Perraki Th, Grigoropoulou E. Mineralogical study and porosimetry measurements of zeolites from Scaloma area, Thrace, Greece. Micropor Mesopor Mater 2008; 112:441-449.
  • [43] Elaiopoulos K, Perraki Th, Grigoropoulou E. Monitoring the effect of hydrothermal treatments on the structure of a natural zeolite through a combined XRD, FTIR, SEM and N2-porosimetry analysis. Micropor Mesopor Mater 2010; 134: 29-43.
  • [44] Akimkhan MA. Structural and Ion-Exchange Properties of Natural Zeolite. In: Ayben K, editor. Ion Exchange Technologies. In Tech press, 2012. pp. 261-282.
There are 44 citations in total.

Details

Subjects Engineering
Journal Section Articles
Authors

MERYEM Sakızcı

Publication Date December 1, 2016
Published in Issue Year 2016 Volume: 17 Issue: 4

Cite

APA Sakızcı, M. (2016). INVESTIGATION OF THERMAL AND STRUCTURAL PROPERTIES OF NATURAL AND ION-EXCHANGED ANALCIME. Anadolu University Journal of Science and Technology A - Applied Sciences and Engineering, 17(4), 724-734. https://doi.org/10.18038/aubtda.266863
AMA Sakızcı M. INVESTIGATION OF THERMAL AND STRUCTURAL PROPERTIES OF NATURAL AND ION-EXCHANGED ANALCIME. AUJST-A. December 2016;17(4):724-734. doi:10.18038/aubtda.266863
Chicago Sakızcı, MERYEM. “INVESTIGATION OF THERMAL AND STRUCTURAL PROPERTIES OF NATURAL AND ION-EXCHANGED ANALCIME”. Anadolu University Journal of Science and Technology A - Applied Sciences and Engineering 17, no. 4 (December 2016): 724-34. https://doi.org/10.18038/aubtda.266863.
EndNote Sakızcı M (December 1, 2016) INVESTIGATION OF THERMAL AND STRUCTURAL PROPERTIES OF NATURAL AND ION-EXCHANGED ANALCIME. Anadolu University Journal of Science and Technology A - Applied Sciences and Engineering 17 4 724–734.
IEEE M. Sakızcı, “INVESTIGATION OF THERMAL AND STRUCTURAL PROPERTIES OF NATURAL AND ION-EXCHANGED ANALCIME”, AUJST-A, vol. 17, no. 4, pp. 724–734, 2016, doi: 10.18038/aubtda.266863.
ISNAD Sakızcı, MERYEM. “INVESTIGATION OF THERMAL AND STRUCTURAL PROPERTIES OF NATURAL AND ION-EXCHANGED ANALCIME”. Anadolu University Journal of Science and Technology A - Applied Sciences and Engineering 17/4 (December 2016), 724-734. https://doi.org/10.18038/aubtda.266863.
JAMA Sakızcı M. INVESTIGATION OF THERMAL AND STRUCTURAL PROPERTIES OF NATURAL AND ION-EXCHANGED ANALCIME. AUJST-A. 2016;17:724–734.
MLA Sakızcı, MERYEM. “INVESTIGATION OF THERMAL AND STRUCTURAL PROPERTIES OF NATURAL AND ION-EXCHANGED ANALCIME”. Anadolu University Journal of Science and Technology A - Applied Sciences and Engineering, vol. 17, no. 4, 2016, pp. 724-3, doi:10.18038/aubtda.266863.
Vancouver Sakızcı M. INVESTIGATION OF THERMAL AND STRUCTURAL PROPERTIES OF NATURAL AND ION-EXCHANGED ANALCIME. AUJST-A. 2016;17(4):724-3.