Research Article
BibTex RIS Cite

THE SPECTROSCOPIC ANALYSIS OF 2,4'-DIBROMOACETOPHENONE MOLECULEBY USING QUANTUM CHEMICAL CALCULATIONS

Year 2016, Volume: 17 Issue: 4, 677 - 702, 01.12.2016
https://doi.org/10.18038/aubtda.267115

Abstract

A
spectroscopic investigation, used quantum chemical calculations, of
2,4'-dibromoacetophenone (2,4'-DBrA) molecule have been obtained in this paper.
The calculations were supported the experimental results by IR, 1H
and 13C NMR techniques. Geometrical parameters and optimized
energies of 2,4'-DBrA molecule were performed by density functional theory
(DFT) B3LYP method 6-311++G(d,p) basis sets. After the geometry optimization of
2,4'-DBrA the vibrational spectra were obtained for this structure. The
fundamental vibrations were assigned to base on potential energy distribution
(PED) of the vibrational modes by using VEDA 4 (Vibrational Energy Distribution
Analysis) program. Density of states for total (TDOS), partial (PDOS) and also
overlap population (OPDOS) analysis were obtained. 1H and 13C
NMR chemical shifts were recorded by using the gauge-invariant atomic orbital
(GIAO) method. Besides, electronic properties, such as HOMO and LUMO energies,
were performed by time-dependent density functional theory (TD-DFT). Also,
molecular electrostatic potential surface (MEPs) and thermodynamic properties
were calculated for title molecule. The results are showed consistent with the
obtained experimental results.

References

  • [1] Griffin, R.N., Phosphorescence of Aromatic Ketones in Low-Temperature Glasses, Photochemistry and Photobiology. (1968) 7 159–173.
  • [2] Lutz, H., Duval, M.C., Breheret, E., Lindqvist, L., Solvent effects on acetophenone photoreduction studied by laser photolysis, The Journal of Physical Chemistry. (1972) 76 821–822.
  • [3] Scharf, G., Winefordner, J.D., Phosphorescence characteristics of acetophenone, benzophenone, p-aminobenzophenone and michlercs ketone in various environments, Talanta. (1986) 33 17–25.
  • [4] Proksch, P., Rodriguez, E., Chromenes and benzofurans of the asteraceae, their chemistry and biological significance, Phytochemistry. (1983) 22 2335–2348.
  • [5] Tomás-Barberán, F., Iniesta-Sanmartín, E., Tomás-Lorente, F., Rumbero, A., Antimicrobial phenolic compounds from three Spanish Helichrysum species, Phytochemistry. (1990) 29 1093–1095.
  • [6] Buckle, D.R., Smith, H., Cantello, B.C.C., Substituted ω-nitroacetophenones, (1976).
  • [7] Buckle, D.R., Smith, H., Cantello, B.C.C., Acetophenone derivatives, (1976).
  • [8] Sivakumar, P.M., Sheshayan, G., Doble, M., Experimental and QSAR of Acetophenones as Antibacterial Agents, Chemical Biology & Drug Design. (2008) 72 303–313.
  • [9] Sittig, M., Pharmaceutical manufacturing encyclopedia, Noyes publ., 1988.
  • [10] Amin, S.I., Walker, J.A., Process for preparing arylalkanoic acid derivatives, 1979.
  • [11] Zhang, X., Shan, L., Huang, H., Yang, X., Liang, X., Xing, A., et al., Rapid identification of acetophenones in two Cynanchum species using liquid chromatography-electrospray ionization tandem mass spectrometry., Journal of Pharmaceutical and Biomedical Analysis. (2009) 49 715–25.
  • [12] Liu, Z., Sun, Y., Wang, J., Zhu, H., Zhou, H., Hu, J., et al., Preparative isolation and purification of acetophenones from the Chinese medicinal plant Cynanchum bungei Decne. by high-speed counter-current chromatography, Separation and Purification Technology. (2008) 64 247–252.
  • [13] Cacchi, S., Fabrizi, G., Gavazza, F., Goggiamani, A., Palladium-Catalyzed Reaction of Aryl Iodides with Acetic Anhydride. A Carbon Monoxide-Free Synthesis of Acetophenones, Organic Letters. (2003) 5 289–291.
  • [14] Prasad, Y.R., Rao, a S., Rambabu, R., Synthesis of Some 4 ’-Amino Chalcones and their Antiinflammatory and Antimicrobial Activity, Asian Journal of Chemistry. (2009) 21 907–914.
  • [15] Gupta, M.P., Prasad, S.M., The crystal structure of [alpha]-bromoacetophenone, Acta Crystallographica Section B. (1971) 27 1649–1653.
  • [16] Baker, L.-J., Copp, B.R., and Rickard, C.E.F., 2’-Amino-5’-bromoacetophenone, Acta Crystallographica Section E Structure Reports Online. (2001) 57 o996–o998.
  • [17] Seth, S.K., Hazra, D.K., Mukherjee, M., Kar, T., Synthesis, structural elucidation and DFT studies of ortho-hydroxy acetophenones, Journal of Molecular Structure. (2009) 936 277–282.
  • [18] Piro, O.E., Echeverría, G.A., Lizarraga, E., Romano, E., Catalán, C.A.N., Brandán, S.A., Molecular structure of 4-hidroxy-3-(3-methyl-2-butenyl) acetophenone, a plant antifungal, by X-ray diffraction, DFT calculation, and NMR and FTIR spectroscopy., Spectrochimica Acta. Part A, Molecular and Biomolecular Spectroscopy. (2013) 101 196–203.
  • [19] Rodrı́guez, A.M., Giannini, F.A., Baldoni, H.A., Santagata, L.N., Zamora, M.A., Zacchino, S., et al., Conformational potential energy curves of acetophenone and α-substituted acetophenones, Journal of Molecular Structure: THEOCHEM. (1999) 463 271–281.
  • [20] Xiao, H.-Y., Liu, Y.-J., Fang, W.-H., Density functional theory investigation of the photodissociation channels of acetophenone, Journal of Molecular Structure: THEOCHEM. (2007) 802 99–103.
  • [21] Krishnakumar, V., Balachandran, V., DFT studies, vibrational spectra and conformational stability of 4-hydroxy-3-methylacetophenone and 4-hydroxy-3-methoxyacetophenone., Spectrochimica Acta. Part A, Molecular and Biomolecular Spectroscopy. (2005) 61 2510–25.
  • [22] Anbusrinivasan, P., Kavitha, S., Growth and characterization studies of 2-bromo-4-chloroacetophenone crystals, Asian Journal of Chemistry. (2008) 20 979–982.
  • [23] Anbarasu, P., Arivazhaganb, M., Scaled quantum chemical study of structure and vibrational spectra of 5-fluro-2-hydroxyacetophenone, Indian Journal of Pure and Applied Physics. (2011) 49 227–233.
  • [24] Udhayakala, P., Rajendiran, T. V, Seshadri, S., Gunasekaran, S., Quantum chemical vibrational study, molecular property and HOMO-LUMO energies of 3-bromoacetophenone for Pharmaceutical application, Journal of Chemical and Pharmaceutical Research. (2011) 3 610–625.
  • [25] Subramanian, M.K., Anbarasan, P.M., Ilangovan, V., Babu, S.M., FT-IR, NIR-FT-Raman and gas phase infrared spectra of 3-aminoacetophenone by density functional theory and ab initio Hartree-Fock calculations, Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy. (2008) 71 59–67.
  • [26] Ramalingam, S., Anbusrinivasan, P., Periandy, S., FT-IR and FT-Raman spectral investigation, computed IR intensity and Raman activity analysis and frequency estimation analysis on 4-chloro-2-bromoacetophenone using HF and DFT calculations., Spectrochimica Acta. Part A, Molecular and Biomolecular Spectroscopy. (2011) 78 826–34.
  • [27] Jeyavijayan, S., Molecular structure, spectroscopic (FTIR, FT-Raman, 13C and 1H NMR, UV), polarizability and first-order hyperpolarizability, HOMO-LUMO analysis of 2,4-difluoroacetophenone., Spectrochimica Acta. Part A, Molecular and Biomolecular Spectroscopy. (2015) 136 Pt B 553–66.
  • [28] Parimala, K., Balachandran, V., Structural study, NCA, FT-IR, FT-Raman spectral investigations, NBO analysis and thermodynamic properties of 2’,4’-difluoroacetophenone by HF and DFT calculations., Spectrochimica Acta. Part A, Molecular and Biomolecular Spectroscopy. (2013) 110 269–84.
  • [29] SDBS Web: http://sdbs.riodb.aist.go.jp (National Institute of Advanced Industrial Science and Technology), SDBS Web: http://sdbs.riodb.aist.go.jp (National Institute of Advanced Industrial Science and Technology), (2016).
  • [30] Frisch, Mj., Trucks, G.W., Schlegel, H.B., Scuseria, G.E., Robb, M.A., Cheeseman, J.R., et al., Gaussian 09, Gaussian, Inc., Wallingford, CT. (2009).
  • [31] Hohenberg, P., Kohn, W., Inhomogeneous Electron Gas, Physical Review. (1964) 136 B864–B871.
  • [32] Becke, A.D., Density-functional thermochemistry. III. The role of exact exchange, The Journal of Chemical Physics. (1993) 98 5648–5652.
  • [33] Becke, A.D., Density-functional exchange-energy approximation with correct asymptotic behavior, Physical Review A. (1988) 38 3098–3100.
  • [34] Lee, C., Yang, W., Parr, R.G., Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density, Physical Review B. (1988) 37 785–789.
  • [35] Jamróz, M.H., Vibrational energy distribution analysis (VEDA): scopes and limitations., Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy. (2013) 114 220–230.
  • [36] Dennington, R., Keith, T., Millam, J., GaussView, version 5, 2009.
  • [37] Guillaumont, D., Nakamura, S., Calculation of the absorption wavelength of dyes using time-dependent density-functional theory (TD-DFT), Dyes and Pigments. (2000) 46 85–92.
  • [38] Fabian, J., TDDFT-calculations of Vis/NIR absorbing compounds, Dyes and Pigments. (2010) 84 36–53.
  • [39] Ditchfield, R., Molecular Orbital Theory of Magnetic Shielding and Magnetic Susceptibility, The Journal of Chemical Physics. (1972) 56 5688–5691.
  • [40] Wolinski, K., Hinton, J.F., Pulay, P., Efficient implementation of the gauge-independent atomic orbital method for NMR chemical shift calculations, Journal of the American Chemical Society. (1990) 112 8251–8260.
  • [41] O’boyle, N.M., Tenderholt, A.L., Langner, K.M., Software News and Updates cclib : A Library for Package-Independent Computational Chemistry Algorithms, Journal of Computational Chemistry. (2008) 29 839–845.
  • [42] Karabacak, M., Kurt, M., The spectroscopic (FT-IR and FT-Raman) and theoretical studies of 5-bromo-salicylic acid, Journal of Molecular Structure. (2009) 919 215–222.
  • [43] Karabacak, M., Kose, E., Atac, A., Sas, E.B., Asiri, A.M., Kurt, M., Experimental (FT-IR, FT-Raman, UV–Vis, 1H and 13CNMR) and computational (density functional theory) studies on 3-bromophenylboronic acid, Journal of Molecular Structure. (2014) 1076 358–372.
  • [44] Karabacak, M., Cinar, M., Ermec, S., Kurt, M., Experimental vibrational spectra (Raman, infrared) and DFT calculations on monomeric and dimeric structures of 2- and 6-bromonicotinic acid, Journal of Raman Spectroscopy. (2010) 41 98–105.
  • [45] Dollish, F.R., Fateley, W.G., Bentley, F.F., Characteristic Raman frequencies of organic compounds, Wiley, 1974.
  • [46] Colthup, N.B., Daly, L.H., Wiberley, S.E., Introduction to Infrared and Raman Spectroscopy, Academic Press, 1990.
  • [47] Varsányi, G., Assignments for vibrational spectra of seven hundred benzene derivatives, Halsted Press, 1974.
  • [48] Mooney, E.F., The infrared spectra of chloro- and bromobenzene derivatives—I, Spectrochimica Acta. (1963) 19 877–887.
  • [49] Sas, E.B., Kose, E., Kurt, M., Karabacak, M., FT-IR, FT-Raman, NMR and UV-Vis spectra and DFT calculations of 5-bromo-2-ethoxyphenylboronic acid (monomer and dimer structures), Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy. (2015) 137C 1315–1333.
  • [50] Sundaraganesan, N., Meganathan, C., Anand, B., Lapouge, C., FT-IR, FT-Raman spectra and ab initio DFT vibrational analysis of p-bromophenoxyacetic acid., Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy. (2007) 66 773–780.
  • [51] Kurt, M., DFT simulations and Vibrational spectra of 4-chloro and 4-bromophenylboronic acid molecules, Journal of Raman Spectroscopy. (2009) 40 67–75.
  • [52] Smith, B., Infrared spectral interpretation: a systematic approach, 1998. (accessed June 6, 2014).
  • [53] Socrates, G., Infrared and Raman Characteristic Group Frequencies: Tables and Charts, John Wiley & Sons Ltd., West Sussex, England, 2001.
  • [54] Silverstein, R.M., Webster, F.X., Kiemle, D.J., Spectrometric identification of organic compounds, John Wiley & Sons, 2005.
  • [55] Gianturco, M.A., Pitcher, R.G., New Spectra-Structure Correlations of Aliphatic Ketones, Applied Spectroscopy. (1965) 19 109–110.
  • [56] Schlick, T., Molecular Modeling and Simulation: An Interdisciplinary Guide: An Interdisciplinary Guide, 2nd ed., Springer, Newyork, USA, 2010.
  • [57] Subramanian, N., Sundaraganesan, N., Jayabharathi, J., Molecular structure, spectroscopic (FT-IR, FT-Raman, NMR, UV) studies and first-order molecular hyperpolarizabilities of 1,2-bis(3-methoxy-4-hydroxybenzylidene)hydrazine by density functional method., Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy. (2010) 76 259–269.
  • [58] Karabacak, M., Karaca, C., Atac, A., Eskici, M., Karanfil, A., Kose, E., Synthesis, analysis of spectroscopic and nonlinear optical properties of the novel compound: (S)-N-benzyl-1-phenyl-5-(thiophen-3-yl)-4-pentyn-2-amine., Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy. (2012) 97 556–567.
  • [59] Kalinowski, H.O., Berger, S., Braun, S., Carbon-13 NMR spectroscopy, 1988.
  • [60] Pihlaja, K., Kleinpeter, E., Carbon-13 NMR Chemical Shifts in Structural and Stereochemical Analysis, VCH, 1994.
  • [61] Breitmaier, E., Voelter, W., Carbon-13 NMR spectroscopy, Carbon 13 NMR Spectroscopy. (1987). (accessed November 21, 2014).
  • [62] Arivazhagan, M., Anitha Rexalin, D., FT-IR, FT-Raman, NMR studies and ab initio-HF, DFT-B3LYP vibrational analysis of 4-chloro-2-fluoroaniline., Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy. (2012) 96 668–676.
  • [63] Parr, R.G., Pearson, R.G., Absolute hardness: companion parameter to absolute electronegativity, Journal of the American Chemical Society. (1983) 105 7512–7516.
  • [64] Parr, R.G., Yang, W., Density-Functional Theory of Atoms and Molecules, Oxford University Press, USA, 1989. (accessed November 21, 2014).
  • [65] Hoffman, R., Solids and surfaces: a chemist’s view of bonding in extended structures, 1988.
  • [66] Hughbanks, T., Hoffmann, R., Chains of trans-edge-sharing molybdenum octahedra: metal-metal bonding in extended systems, Journal of the American Chemical Society. (1983) 105 3528–3537.
  • [67] Małecki, J.G., Synthesis, crystal, molecular and electronic structures of thiocyanate ruthenium complexes with pyridine and its derivatives as ligands, Polyhedron. (2010) 29 1973–1979.
  • [68] Gorelsky, S.I., Ghosh, S., Solomon, E.I., Mechanism of N2O Reduction by the μ4-S Tetranuclear CuZ Cluster of Nitrous Oxide Reductase, Journal of the American Chemical Society. (2005) 128 278–290.
  • [69] Ghosh, S., Gorelsky, S.I., Chen, P., Cabrito, I., Moura, J.J.G., Moura, I., et al., Activation of N2O reduction by the fully reduced micro4-sulfide bridged tetranuclear Cu Z cluster in nitrous oxide reductase., Journal of the American Chemical Society. (2003) 125 15708–15709.
  • [70] Platas-Iglesias, C., Esteban-Gómez, D., Enríquez-Pérez, T., Avecilla, F., de Blas, A., Rodríguez-Blas, T., Lead(II) Thiocyanate Complexes with Bibracchial Lariat Ethers:  An X-ray and DFT Study, Inorganic Chemistry. (2005) 44 2224–2233.
  • [71] Chen, M., Waghmare, U. V., Friend, C.M., Kaxiras, E., A density functional study of clean and hydrogen-covered α-MoO3(010): Electronic structure and surface relaxation, The Journal of Chemical Physics. (1998) 109 6854–6860.
  • [72] Okulik, N., Jubert, A.H., Theoretical analysis of the reactive sites of non-steroidal anti-inflammatory drugs, Internet Electronic Journal of Molecular Design. (2005) 4 17–30.
  • [73] Luque, F.J., López, J.M., Orozco, M., Perspective on “Electrostatic interactions of a solute with a continuum. A direct utilization of ab initio molecular potentials for the prevision of solvent effects,” Theoretical Chemistry Accounts: Theory, Computation, and Modeling (Theoretica Chimica Acta). (2000) 103 343–345.
  • [74] Mulliken, R.S., Electronic Population Analysis on LCAO-MO Molecular Wave Functions. I, The Journal of Chemical Physics. (1955) 23 1833–1840.
Year 2016, Volume: 17 Issue: 4, 677 - 702, 01.12.2016
https://doi.org/10.18038/aubtda.267115

Abstract

References

  • [1] Griffin, R.N., Phosphorescence of Aromatic Ketones in Low-Temperature Glasses, Photochemistry and Photobiology. (1968) 7 159–173.
  • [2] Lutz, H., Duval, M.C., Breheret, E., Lindqvist, L., Solvent effects on acetophenone photoreduction studied by laser photolysis, The Journal of Physical Chemistry. (1972) 76 821–822.
  • [3] Scharf, G., Winefordner, J.D., Phosphorescence characteristics of acetophenone, benzophenone, p-aminobenzophenone and michlercs ketone in various environments, Talanta. (1986) 33 17–25.
  • [4] Proksch, P., Rodriguez, E., Chromenes and benzofurans of the asteraceae, their chemistry and biological significance, Phytochemistry. (1983) 22 2335–2348.
  • [5] Tomás-Barberán, F., Iniesta-Sanmartín, E., Tomás-Lorente, F., Rumbero, A., Antimicrobial phenolic compounds from three Spanish Helichrysum species, Phytochemistry. (1990) 29 1093–1095.
  • [6] Buckle, D.R., Smith, H., Cantello, B.C.C., Substituted ω-nitroacetophenones, (1976).
  • [7] Buckle, D.R., Smith, H., Cantello, B.C.C., Acetophenone derivatives, (1976).
  • [8] Sivakumar, P.M., Sheshayan, G., Doble, M., Experimental and QSAR of Acetophenones as Antibacterial Agents, Chemical Biology & Drug Design. (2008) 72 303–313.
  • [9] Sittig, M., Pharmaceutical manufacturing encyclopedia, Noyes publ., 1988.
  • [10] Amin, S.I., Walker, J.A., Process for preparing arylalkanoic acid derivatives, 1979.
  • [11] Zhang, X., Shan, L., Huang, H., Yang, X., Liang, X., Xing, A., et al., Rapid identification of acetophenones in two Cynanchum species using liquid chromatography-electrospray ionization tandem mass spectrometry., Journal of Pharmaceutical and Biomedical Analysis. (2009) 49 715–25.
  • [12] Liu, Z., Sun, Y., Wang, J., Zhu, H., Zhou, H., Hu, J., et al., Preparative isolation and purification of acetophenones from the Chinese medicinal plant Cynanchum bungei Decne. by high-speed counter-current chromatography, Separation and Purification Technology. (2008) 64 247–252.
  • [13] Cacchi, S., Fabrizi, G., Gavazza, F., Goggiamani, A., Palladium-Catalyzed Reaction of Aryl Iodides with Acetic Anhydride. A Carbon Monoxide-Free Synthesis of Acetophenones, Organic Letters. (2003) 5 289–291.
  • [14] Prasad, Y.R., Rao, a S., Rambabu, R., Synthesis of Some 4 ’-Amino Chalcones and their Antiinflammatory and Antimicrobial Activity, Asian Journal of Chemistry. (2009) 21 907–914.
  • [15] Gupta, M.P., Prasad, S.M., The crystal structure of [alpha]-bromoacetophenone, Acta Crystallographica Section B. (1971) 27 1649–1653.
  • [16] Baker, L.-J., Copp, B.R., and Rickard, C.E.F., 2’-Amino-5’-bromoacetophenone, Acta Crystallographica Section E Structure Reports Online. (2001) 57 o996–o998.
  • [17] Seth, S.K., Hazra, D.K., Mukherjee, M., Kar, T., Synthesis, structural elucidation and DFT studies of ortho-hydroxy acetophenones, Journal of Molecular Structure. (2009) 936 277–282.
  • [18] Piro, O.E., Echeverría, G.A., Lizarraga, E., Romano, E., Catalán, C.A.N., Brandán, S.A., Molecular structure of 4-hidroxy-3-(3-methyl-2-butenyl) acetophenone, a plant antifungal, by X-ray diffraction, DFT calculation, and NMR and FTIR spectroscopy., Spectrochimica Acta. Part A, Molecular and Biomolecular Spectroscopy. (2013) 101 196–203.
  • [19] Rodrı́guez, A.M., Giannini, F.A., Baldoni, H.A., Santagata, L.N., Zamora, M.A., Zacchino, S., et al., Conformational potential energy curves of acetophenone and α-substituted acetophenones, Journal of Molecular Structure: THEOCHEM. (1999) 463 271–281.
  • [20] Xiao, H.-Y., Liu, Y.-J., Fang, W.-H., Density functional theory investigation of the photodissociation channels of acetophenone, Journal of Molecular Structure: THEOCHEM. (2007) 802 99–103.
  • [21] Krishnakumar, V., Balachandran, V., DFT studies, vibrational spectra and conformational stability of 4-hydroxy-3-methylacetophenone and 4-hydroxy-3-methoxyacetophenone., Spectrochimica Acta. Part A, Molecular and Biomolecular Spectroscopy. (2005) 61 2510–25.
  • [22] Anbusrinivasan, P., Kavitha, S., Growth and characterization studies of 2-bromo-4-chloroacetophenone crystals, Asian Journal of Chemistry. (2008) 20 979–982.
  • [23] Anbarasu, P., Arivazhaganb, M., Scaled quantum chemical study of structure and vibrational spectra of 5-fluro-2-hydroxyacetophenone, Indian Journal of Pure and Applied Physics. (2011) 49 227–233.
  • [24] Udhayakala, P., Rajendiran, T. V, Seshadri, S., Gunasekaran, S., Quantum chemical vibrational study, molecular property and HOMO-LUMO energies of 3-bromoacetophenone for Pharmaceutical application, Journal of Chemical and Pharmaceutical Research. (2011) 3 610–625.
  • [25] Subramanian, M.K., Anbarasan, P.M., Ilangovan, V., Babu, S.M., FT-IR, NIR-FT-Raman and gas phase infrared spectra of 3-aminoacetophenone by density functional theory and ab initio Hartree-Fock calculations, Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy. (2008) 71 59–67.
  • [26] Ramalingam, S., Anbusrinivasan, P., Periandy, S., FT-IR and FT-Raman spectral investigation, computed IR intensity and Raman activity analysis and frequency estimation analysis on 4-chloro-2-bromoacetophenone using HF and DFT calculations., Spectrochimica Acta. Part A, Molecular and Biomolecular Spectroscopy. (2011) 78 826–34.
  • [27] Jeyavijayan, S., Molecular structure, spectroscopic (FTIR, FT-Raman, 13C and 1H NMR, UV), polarizability and first-order hyperpolarizability, HOMO-LUMO analysis of 2,4-difluoroacetophenone., Spectrochimica Acta. Part A, Molecular and Biomolecular Spectroscopy. (2015) 136 Pt B 553–66.
  • [28] Parimala, K., Balachandran, V., Structural study, NCA, FT-IR, FT-Raman spectral investigations, NBO analysis and thermodynamic properties of 2’,4’-difluoroacetophenone by HF and DFT calculations., Spectrochimica Acta. Part A, Molecular and Biomolecular Spectroscopy. (2013) 110 269–84.
  • [29] SDBS Web: http://sdbs.riodb.aist.go.jp (National Institute of Advanced Industrial Science and Technology), SDBS Web: http://sdbs.riodb.aist.go.jp (National Institute of Advanced Industrial Science and Technology), (2016).
  • [30] Frisch, Mj., Trucks, G.W., Schlegel, H.B., Scuseria, G.E., Robb, M.A., Cheeseman, J.R., et al., Gaussian 09, Gaussian, Inc., Wallingford, CT. (2009).
  • [31] Hohenberg, P., Kohn, W., Inhomogeneous Electron Gas, Physical Review. (1964) 136 B864–B871.
  • [32] Becke, A.D., Density-functional thermochemistry. III. The role of exact exchange, The Journal of Chemical Physics. (1993) 98 5648–5652.
  • [33] Becke, A.D., Density-functional exchange-energy approximation with correct asymptotic behavior, Physical Review A. (1988) 38 3098–3100.
  • [34] Lee, C., Yang, W., Parr, R.G., Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density, Physical Review B. (1988) 37 785–789.
  • [35] Jamróz, M.H., Vibrational energy distribution analysis (VEDA): scopes and limitations., Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy. (2013) 114 220–230.
  • [36] Dennington, R., Keith, T., Millam, J., GaussView, version 5, 2009.
  • [37] Guillaumont, D., Nakamura, S., Calculation of the absorption wavelength of dyes using time-dependent density-functional theory (TD-DFT), Dyes and Pigments. (2000) 46 85–92.
  • [38] Fabian, J., TDDFT-calculations of Vis/NIR absorbing compounds, Dyes and Pigments. (2010) 84 36–53.
  • [39] Ditchfield, R., Molecular Orbital Theory of Magnetic Shielding and Magnetic Susceptibility, The Journal of Chemical Physics. (1972) 56 5688–5691.
  • [40] Wolinski, K., Hinton, J.F., Pulay, P., Efficient implementation of the gauge-independent atomic orbital method for NMR chemical shift calculations, Journal of the American Chemical Society. (1990) 112 8251–8260.
  • [41] O’boyle, N.M., Tenderholt, A.L., Langner, K.M., Software News and Updates cclib : A Library for Package-Independent Computational Chemistry Algorithms, Journal of Computational Chemistry. (2008) 29 839–845.
  • [42] Karabacak, M., Kurt, M., The spectroscopic (FT-IR and FT-Raman) and theoretical studies of 5-bromo-salicylic acid, Journal of Molecular Structure. (2009) 919 215–222.
  • [43] Karabacak, M., Kose, E., Atac, A., Sas, E.B., Asiri, A.M., Kurt, M., Experimental (FT-IR, FT-Raman, UV–Vis, 1H and 13CNMR) and computational (density functional theory) studies on 3-bromophenylboronic acid, Journal of Molecular Structure. (2014) 1076 358–372.
  • [44] Karabacak, M., Cinar, M., Ermec, S., Kurt, M., Experimental vibrational spectra (Raman, infrared) and DFT calculations on monomeric and dimeric structures of 2- and 6-bromonicotinic acid, Journal of Raman Spectroscopy. (2010) 41 98–105.
  • [45] Dollish, F.R., Fateley, W.G., Bentley, F.F., Characteristic Raman frequencies of organic compounds, Wiley, 1974.
  • [46] Colthup, N.B., Daly, L.H., Wiberley, S.E., Introduction to Infrared and Raman Spectroscopy, Academic Press, 1990.
  • [47] Varsányi, G., Assignments for vibrational spectra of seven hundred benzene derivatives, Halsted Press, 1974.
  • [48] Mooney, E.F., The infrared spectra of chloro- and bromobenzene derivatives—I, Spectrochimica Acta. (1963) 19 877–887.
  • [49] Sas, E.B., Kose, E., Kurt, M., Karabacak, M., FT-IR, FT-Raman, NMR and UV-Vis spectra and DFT calculations of 5-bromo-2-ethoxyphenylboronic acid (monomer and dimer structures), Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy. (2015) 137C 1315–1333.
  • [50] Sundaraganesan, N., Meganathan, C., Anand, B., Lapouge, C., FT-IR, FT-Raman spectra and ab initio DFT vibrational analysis of p-bromophenoxyacetic acid., Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy. (2007) 66 773–780.
  • [51] Kurt, M., DFT simulations and Vibrational spectra of 4-chloro and 4-bromophenylboronic acid molecules, Journal of Raman Spectroscopy. (2009) 40 67–75.
  • [52] Smith, B., Infrared spectral interpretation: a systematic approach, 1998. (accessed June 6, 2014).
  • [53] Socrates, G., Infrared and Raman Characteristic Group Frequencies: Tables and Charts, John Wiley & Sons Ltd., West Sussex, England, 2001.
  • [54] Silverstein, R.M., Webster, F.X., Kiemle, D.J., Spectrometric identification of organic compounds, John Wiley & Sons, 2005.
  • [55] Gianturco, M.A., Pitcher, R.G., New Spectra-Structure Correlations of Aliphatic Ketones, Applied Spectroscopy. (1965) 19 109–110.
  • [56] Schlick, T., Molecular Modeling and Simulation: An Interdisciplinary Guide: An Interdisciplinary Guide, 2nd ed., Springer, Newyork, USA, 2010.
  • [57] Subramanian, N., Sundaraganesan, N., Jayabharathi, J., Molecular structure, spectroscopic (FT-IR, FT-Raman, NMR, UV) studies and first-order molecular hyperpolarizabilities of 1,2-bis(3-methoxy-4-hydroxybenzylidene)hydrazine by density functional method., Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy. (2010) 76 259–269.
  • [58] Karabacak, M., Karaca, C., Atac, A., Eskici, M., Karanfil, A., Kose, E., Synthesis, analysis of spectroscopic and nonlinear optical properties of the novel compound: (S)-N-benzyl-1-phenyl-5-(thiophen-3-yl)-4-pentyn-2-amine., Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy. (2012) 97 556–567.
  • [59] Kalinowski, H.O., Berger, S., Braun, S., Carbon-13 NMR spectroscopy, 1988.
  • [60] Pihlaja, K., Kleinpeter, E., Carbon-13 NMR Chemical Shifts in Structural and Stereochemical Analysis, VCH, 1994.
  • [61] Breitmaier, E., Voelter, W., Carbon-13 NMR spectroscopy, Carbon 13 NMR Spectroscopy. (1987). (accessed November 21, 2014).
  • [62] Arivazhagan, M., Anitha Rexalin, D., FT-IR, FT-Raman, NMR studies and ab initio-HF, DFT-B3LYP vibrational analysis of 4-chloro-2-fluoroaniline., Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy. (2012) 96 668–676.
  • [63] Parr, R.G., Pearson, R.G., Absolute hardness: companion parameter to absolute electronegativity, Journal of the American Chemical Society. (1983) 105 7512–7516.
  • [64] Parr, R.G., Yang, W., Density-Functional Theory of Atoms and Molecules, Oxford University Press, USA, 1989. (accessed November 21, 2014).
  • [65] Hoffman, R., Solids and surfaces: a chemist’s view of bonding in extended structures, 1988.
  • [66] Hughbanks, T., Hoffmann, R., Chains of trans-edge-sharing molybdenum octahedra: metal-metal bonding in extended systems, Journal of the American Chemical Society. (1983) 105 3528–3537.
  • [67] Małecki, J.G., Synthesis, crystal, molecular and electronic structures of thiocyanate ruthenium complexes with pyridine and its derivatives as ligands, Polyhedron. (2010) 29 1973–1979.
  • [68] Gorelsky, S.I., Ghosh, S., Solomon, E.I., Mechanism of N2O Reduction by the μ4-S Tetranuclear CuZ Cluster of Nitrous Oxide Reductase, Journal of the American Chemical Society. (2005) 128 278–290.
  • [69] Ghosh, S., Gorelsky, S.I., Chen, P., Cabrito, I., Moura, J.J.G., Moura, I., et al., Activation of N2O reduction by the fully reduced micro4-sulfide bridged tetranuclear Cu Z cluster in nitrous oxide reductase., Journal of the American Chemical Society. (2003) 125 15708–15709.
  • [70] Platas-Iglesias, C., Esteban-Gómez, D., Enríquez-Pérez, T., Avecilla, F., de Blas, A., Rodríguez-Blas, T., Lead(II) Thiocyanate Complexes with Bibracchial Lariat Ethers:  An X-ray and DFT Study, Inorganic Chemistry. (2005) 44 2224–2233.
  • [71] Chen, M., Waghmare, U. V., Friend, C.M., Kaxiras, E., A density functional study of clean and hydrogen-covered α-MoO3(010): Electronic structure and surface relaxation, The Journal of Chemical Physics. (1998) 109 6854–6860.
  • [72] Okulik, N., Jubert, A.H., Theoretical analysis of the reactive sites of non-steroidal anti-inflammatory drugs, Internet Electronic Journal of Molecular Design. (2005) 4 17–30.
  • [73] Luque, F.J., López, J.M., Orozco, M., Perspective on “Electrostatic interactions of a solute with a continuum. A direct utilization of ab initio molecular potentials for the prevision of solvent effects,” Theoretical Chemistry Accounts: Theory, Computation, and Modeling (Theoretica Chimica Acta). (2000) 103 343–345.
  • [74] Mulliken, R.S., Electronic Population Analysis on LCAO-MO Molecular Wave Functions. I, The Journal of Chemical Physics. (1955) 23 1833–1840.
There are 74 citations in total.

Details

Subjects Engineering
Journal Section Articles
Authors

Etem Kose

Publication Date December 1, 2016
Published in Issue Year 2016 Volume: 17 Issue: 4

Cite

APA Kose, E. (2016). THE SPECTROSCOPIC ANALYSIS OF 2,4’-DIBROMOACETOPHENONE MOLECULEBY USING QUANTUM CHEMICAL CALCULATIONS. Anadolu University Journal of Science and Technology A - Applied Sciences and Engineering, 17(4), 677-702. https://doi.org/10.18038/aubtda.267115
AMA Kose E. THE SPECTROSCOPIC ANALYSIS OF 2,4’-DIBROMOACETOPHENONE MOLECULEBY USING QUANTUM CHEMICAL CALCULATIONS. AUJST-A. December 2016;17(4):677-702. doi:10.18038/aubtda.267115
Chicago Kose, Etem. “THE SPECTROSCOPIC ANALYSIS OF 2,4’-DIBROMOACETOPHENONE MOLECULEBY USING QUANTUM CHEMICAL CALCULATIONS”. Anadolu University Journal of Science and Technology A - Applied Sciences and Engineering 17, no. 4 (December 2016): 677-702. https://doi.org/10.18038/aubtda.267115.
EndNote Kose E (December 1, 2016) THE SPECTROSCOPIC ANALYSIS OF 2,4’-DIBROMOACETOPHENONE MOLECULEBY USING QUANTUM CHEMICAL CALCULATIONS. Anadolu University Journal of Science and Technology A - Applied Sciences and Engineering 17 4 677–702.
IEEE E. Kose, “THE SPECTROSCOPIC ANALYSIS OF 2,4’-DIBROMOACETOPHENONE MOLECULEBY USING QUANTUM CHEMICAL CALCULATIONS”, AUJST-A, vol. 17, no. 4, pp. 677–702, 2016, doi: 10.18038/aubtda.267115.
ISNAD Kose, Etem. “THE SPECTROSCOPIC ANALYSIS OF 2,4’-DIBROMOACETOPHENONE MOLECULEBY USING QUANTUM CHEMICAL CALCULATIONS”. Anadolu University Journal of Science and Technology A - Applied Sciences and Engineering 17/4 (December 2016), 677-702. https://doi.org/10.18038/aubtda.267115.
JAMA Kose E. THE SPECTROSCOPIC ANALYSIS OF 2,4’-DIBROMOACETOPHENONE MOLECULEBY USING QUANTUM CHEMICAL CALCULATIONS. AUJST-A. 2016;17:677–702.
MLA Kose, Etem. “THE SPECTROSCOPIC ANALYSIS OF 2,4’-DIBROMOACETOPHENONE MOLECULEBY USING QUANTUM CHEMICAL CALCULATIONS”. Anadolu University Journal of Science and Technology A - Applied Sciences and Engineering, vol. 17, no. 4, 2016, pp. 677-02, doi:10.18038/aubtda.267115.
Vancouver Kose E. THE SPECTROSCOPIC ANALYSIS OF 2,4’-DIBROMOACETOPHENONE MOLECULEBY USING QUANTUM CHEMICAL CALCULATIONS. AUJST-A. 2016;17(4):677-702.