Research Article
BibTex RIS Cite

Photoluminescence properties of Gd(III) and Ce(III) lanthanide based metal organic frameworks

Year 2016, Volume: 17 Issue: 4, 754 - 765, 01.12.2016
https://doi.org/10.18038/aubtda.267272

Abstract

The Gd(III) and Ce(III)
based-MOFs (metal organic frameworks) have been synthesized by hydrothermal
method using 1,2,4,5­benzenetetracarboxylate (btec) ligand and characterized by
elemental analysis, FT-IR, UV-visible and single-crystal X-ray diffraction. The
crystal structure analysis of Gd(III) complex [C10H9GdO11]
(1) and Ce (III) complex [C10H5CeO9]
(2) show that the central lanthanide
ions are coordinated by nine oxygen atoms in which eight O atoms from btec
ligands and one O atom from water molecule for both structures. The nearest
non-bonding Gd···Gd distance is 3.928 Å while Ce···Ce distance is 4.392 Å.
Complex 1 and 2 bridged by oxygen atoms of btec ligands are formed in 3D networks
via strong hydrogen bonds. Additionally, solid state photoluminescence
properties of 1 and 2 at room temperature have been
investigated. Under the excitation of UV light, intense cyan-blue emission for complex
1 and blue emission for complex 2 are exhibited in the visible regions. 

References

  • [1] Zhao B, Chen XY, Cheng P, Liao DZ, Yan SP, Jiang ZH. Coordination Polymers Containing 1D Channels as Selective Luminescent Probes J. Am. Chem. Soc. 2004; 126: 15394–15395.
  • [2] Guo ZY, Wu H, Srinivas G, Zhou YM, Xiang SC, Chen ZX, Yang YT, Zhou W, O'Keeffe M, Chen BL. A Metal–Organic Framework with Optimized Open Metal Sites and Pore Spaces for High Methane Storage at Room Temperature. Angew. Chem. Int. Ed. 2011; 50: 3178–3181.
  • [3] Jiang CY, Wu T, Zheng ST, Zhao X, Lin QP, Bu XH, Feng PY. A Nine–Connected Mixed–Ligand Nickel–Organic Framework and Its Gas Sorption Properties. Cryst. Growth Des. 2011; 11: 3713–3716.
  • [4] Getman RB, Bae YS, Wilmer CE, Snurr RQ. Review and Analysis of Molecular Simulations of Methane, Hydrogen, and Acetylene Storage in Metal–Organic Frameworks. Chem. Rev. 2012; 112: 703–723.
  • [5] Bao SS, Ma LF, Wang Y, Fang L, Zhu CJ, Li YZ, Zheng LM. Anion–Directed Self–Assembly of Lanthanide–notp Compounds and Their Fluorescence, Magnetic, and Catalytic Properties. Chem. Eur. J. 2007; 13: 2333–2343.
  • [6] Lin ZJ, Yang Z, Liu TF, Huang YB, Cao R. Microwave–Assisted Synthesis of a Series of Lanthanide Metal–Organic Frameworks and Gas Sorption Properties. Inorg. Chem. 2012; 51: 1813–1820.
  • [7] Cañadillas–Delgado L, Fabelo O, Pasán J, Julve M, Lloret F, Ruiz–Pérez C. All–cis–1,2,3,4,5,6–cyclohexanehexacarboxylate two–dimensional gadolinium(III) complexes: Synthesis, X–ray crystal structure and magnetic properties. Polyhedron 2010; 29: 188–195.
  • [8] Zhu HF, Fan J, Okamura T, Zhang ZH, Liu GX, Yu KB, Sun WY, Ueyama N. Metal−Organic Architectures of Silver(I), Cadmium(II), and Copper(II) with a Flexible Tricarboxylate Ligand. Inorg. Chem. 2006; 45: 3941–3948.
  • [9] Cao X, Yu L, Huang R. Two Ce–containing 3D metal–organic frameworks: In situ formation of ligand (DDPD). Journal of Solid State Chemistry 2014; 210: 74–78.
  • [10] Rodrigues CV, Luz LL, Dutra JDL, Junior SA, Malta OL, Gatto CC, Streit HC, Freire RO, Wickleder C, Rodrigues MO. Unusual photoluminescence properties of the 3D mixed–lanthanide–organic frameworks induced by dimeric structures: a theoretical and experimental approach. Phys. Chem. Chem. Phys. 2014; 16: 14858–14866.
  • [11] Lu Z, Wen L, Yao J, Zhu H, Meng Q. Two types of novel layer framework structures assembled from 5–sulfosalicylic acid and lanthanide ions. CrystEngComm, 2006; 8: 847–853.
  • [12] Zhang JL, Ji H, Wei YG, Wang Y, Wu NZ. Low-Temperature Synthesis of Superparamagnetic Nanocomposite Particles Composed of Platinum and Maghemite. J. Phys. Chem. C 2008; 112: 10688–10691.
  • [13] Cañadillas–Delgado L, Fabelo O, Pasan J, Delgado FS, Lloret F, Julve M, Ruiz–Perez C. Intramolecular ferro- and antiferromagnetic interactions in oxo-carboxylate bridged digadolinium(III) complexes. Dalton Trans. 2010; 39: 7286–7293.
  • [14] Dong LJ, Chu W, Zhu QL, Huang RD. Three Novel Homochiral Helical Metal−Organic Frameworks Based on Amino Acid Ligand: Syntheses, Crystal Structures, and Properties. Cryst. Growth Des. 2011; 11 (1): 93–99.
  • [15] Hashimoto M, Igawa S, Yashima M, Kawata I, Hoshino M, Osawa M. Highly Efficient Green Organic Light-Emitting Diodes Containing Luminescent Three-Coordinate Copper(I) Complexes. J. Am. Chem. Soc. 2011; 133 (37): 10348–10351.
  • [16] Dong LJ, Li XF, Cao J, Chu W, Huang RD. An α-Keggin polyoxometalate completely constructed from the late transition metal CoII as poly atom. Dalton Trans. 2013; 42: 1342–1345.
  • [17] Kentc CA, Liu D, Meyer TJ, Lin W. Amplified Luminescence Quenching of Phosphorescent Metal–Organic Frameworks. J. Am. Chem. Soc. 2012; 134 (9): 3991–3994.
  • [18] Lee YR, Kim J, Ahn WS. Synthesis of metal–organic frameworks: A mini review. Korean J. Chem. Eng. 2013; 30(9): 1667–1680.
  • [19] Lv YK, Feng YL, Cheng JW. Two new Cerium–Organic Frameworks with unusual network topologies constructed by racemic tartaric acid involving in situ reaction. Inorganic Chemistry Communications 2012; 15: 130–135.
  • [20] Hopa C, Cokay I. Synthesis, structural characterization and thermal properties of a new copper(II) one-dimensional coordination polymer based on bridging N,N′-bis¬(2-hy¬droxy-benzyl¬idene)-2,2-di¬methyl¬propane-1,3-di¬amine and dicyanamide ligands. Acta Crystallogr. Sect. C Struct. Chem. 2016; 72: 149–154.
  • [21] Yahsi Y, Ozbek H, Aygun M, Kara H. Crystal structure and photoluminescence properties of a new CdII coordination polymer catena-poly[bis¬[4-bromo-2-({[2-(pyrrolidin-1-yl)eth¬yl]imino}¬meth¬yl)phenolato-κ3N,N′,O]di-μ3-chlorido-di-μ2-chlorido-bis¬(methanol-κO)tri¬cadmium(II)]. Acta Cryst. 2016; C72: 426–431.
  • [22] Mohammadinasab R , Tabatabaee M, Kukovec BM, Aghaie H. The cerium(III) coordination polymer with mixed polycarboxylic acids. Preparation of the CeO2 nanoparticles by thermal decomposition of the polymer. Inorganica Chimica Acta 2013; 405: 368–373.
  • [23] Cañadillas–Delgado L, Pasán J, Fabelo O, Julve M, Lloret F, Ruiz–Pérez C. A step further in the comprehension of the magnetic coupling in gadolinium(III)–based carboxylate complexes. Polyhedron 2013; 52: 321–332.
  • [24] Ren MJ, Zhang Z, Zhao P, Zhang J. Three–Dimensional Metal–Organic Hybrid Material Bearing an Open–Framework Self–Assembled by Mononuclear Cerium Benzene Tetracarboxylate Complex. Asian Journal of Chemistry 2008; 20: 3687–3701.
  • [25] Oxford Diffraction Ltd., Version 1.171.31.2.
  • [26] SHELXTL, Rev. 5.0, Bruker AXS, Madison, WI, USA.
  • [27] MERCURY 1.4.2, Copyright from CCDC 2001–2007.
  • [28] John, D, Urland W. Crystal Structure and Magnetic Behaviour of the New Gadolinium Complex Compound Gd2(ClH2CCOO)6(bipy)2. Eur. J. Inorg. Chem. 2005; 2 (22): 4486–4489.
  • [29] Zhang H, Lin SY, Xue S, Wang C, Tang J. Acetato-bridged dinuclear lanthanide complexes with single molecule magnet behaviour for the Dy2 species. Dalton Trans. 2014; 43: 6262–6268.
  • [30] Hong XL, Li YZ, Hu H, Pan Y, Bai J, You XZ. Synthesis, Structure, Luminescence, and Water Induced Reversible Crystal-to-Amorphous Transformation Properties of Lanthanide(III) Benzene-1,4-dioxylacetates with a Three-Dimensional Framework. Crystal Growth & Design 2006; 6 (6): 1221-1226.
  • [31] Zhou RS, Ye L, Ding H, Song JF, Xu XY, Xu JQ. Syntheses, structures, luminescence, and magnetism of four 3D lanthanide 5–sulfosalicylates. Journal of Solid State Chemistry 2008; 181: 567–575.
  • [32] Zhao W, Zhang LJ, Zhao XL. Structural variations and photoluminescent properties of a series of metal–organic frameworks constructed from 5–(4–carboxybenzoylamino)–isophthalic acid. Journal of Solid State Chemistry 2013; 202: 250–256.
  • [33] Berti E, Cecconi F, Ghilardi CA, Midollini S. Isostructural organic–inorganic hybrids of P,P′-diphenyl-methylenediphosphinate (CH2(P(Ph)O2)2)2− with divalent transition metals. Inorg. Chem. Commun. 2002; 5: 1041–1043.
  • [34] Nakamoto K. Infrared and Raman Spectra of Inorganic and Coordination Compounds. A Wiley–Interscience Publication, John Wiley & Sons, Inc. 1986.
  • [35] Erkarslan U, Oylumluoglu G, Coban MB, Öztürk E, Kara H. Cyanide-bridged trinuclear MnIII–FeIII assembly: Crystal structure, magnetic and photoluminescence behavior. Inorganica Chim. Acta. 445, 57–61.
  • [36] Coban MB, Erkanslan U, Oylumluoglu G, Aygun M, Kara H. Hydrothermal synthesis, crystal structure and Photoluminescent properties; 3D Holmium(III) coordination polymer. Inorganica Chimica Acta 2016; 447: 87–91.
  • [37] Feng X, Feng YQ, Chen JJ, Ng SW, Wang LY, Guo JZ. Reticular three-dimensional 3d–4f frameworks constructed through substituted imidazole-dicarboxylate: syntheses, luminescence and magnetic properties study. Dalton Trans. 2014; 44: 804–816.
  • [38] Song XQ, Peng YQ, Cheng GQ, Wang XR, Liu PP, Xu WY. Substituted group-directed assembly of Zn(II) coordination complexes based on two new structural related pyrazolone based Salen ligands: Syntheses, structures and fluorescence properties. Inorganica Chim. Acta. 2015; 427: 13–21.
  • [39] Manjunatha MN, Dikundwar AG, Nagasundara, KR. Zn(II), Cd(II) and Hg(II) complexes with 1-(p-methoxybenzyl)-2-(p-methoxyphenyl)benzimidazole: Syntheses, structures and luminescence. Polyhedron 2011; 30: 1299–1304.
  • [40] Feng X, Liu L, Wang LY, Song HL, Shi ZQ, Wu XH, Ng SW. Lanthanide coordination polymers based on multi-donor ligand containing pyridine and phthalate moieties: Structures, luminescence and magnetic properties. Journal of Solid State Chemistry 2013; 206: 277–285.
  • [41] Feng X, Wang LY, Zhao JS, Wang JG, Weng NS, Liu B, Shi XG. Series of anion-directed lanthanide-rigid-flexible frameworks: syntheses, structures, luminescence and magnetic properties. CrystEngComm, 2010; 12: 774–783.
  • [42] Carnall WT. The Absorption and Fluorescence Spectra of Rare Earth Íons in Solution. North-Holland, Amsterdam, 1979.
  • [43] Oliveira CAF, Silva FF, Malvestiti I, Malta VRS, Dutra JDL, Costa Jr. NB, Freire RO, Alves Jr S. Synthesis, characterization, luminescent properties and theoretical study of two new coordination polymers containing lanthanide [Ce(III) or Yb(III)] and succinate ions. Journal of Molecular Structure 2013; 1041: 61–67.
  • [44] Wang P, Fan RG, Yang YL, Liu XR, Xiao P, Li XY, Hasi W, Cao WW. 1-D helical chain, 2-D layered network and 3-D porous lanthanide–organic frameworks based on multiple coordination sites of benzimidazole-5,6-dicarboxylic acid: synthesis, crystal structure, photoluminescence and thermal stability. CrystEngComm, 2013; 15: 4489–4506.
Year 2016, Volume: 17 Issue: 4, 754 - 765, 01.12.2016
https://doi.org/10.18038/aubtda.267272

Abstract

References

  • [1] Zhao B, Chen XY, Cheng P, Liao DZ, Yan SP, Jiang ZH. Coordination Polymers Containing 1D Channels as Selective Luminescent Probes J. Am. Chem. Soc. 2004; 126: 15394–15395.
  • [2] Guo ZY, Wu H, Srinivas G, Zhou YM, Xiang SC, Chen ZX, Yang YT, Zhou W, O'Keeffe M, Chen BL. A Metal–Organic Framework with Optimized Open Metal Sites and Pore Spaces for High Methane Storage at Room Temperature. Angew. Chem. Int. Ed. 2011; 50: 3178–3181.
  • [3] Jiang CY, Wu T, Zheng ST, Zhao X, Lin QP, Bu XH, Feng PY. A Nine–Connected Mixed–Ligand Nickel–Organic Framework and Its Gas Sorption Properties. Cryst. Growth Des. 2011; 11: 3713–3716.
  • [4] Getman RB, Bae YS, Wilmer CE, Snurr RQ. Review and Analysis of Molecular Simulations of Methane, Hydrogen, and Acetylene Storage in Metal–Organic Frameworks. Chem. Rev. 2012; 112: 703–723.
  • [5] Bao SS, Ma LF, Wang Y, Fang L, Zhu CJ, Li YZ, Zheng LM. Anion–Directed Self–Assembly of Lanthanide–notp Compounds and Their Fluorescence, Magnetic, and Catalytic Properties. Chem. Eur. J. 2007; 13: 2333–2343.
  • [6] Lin ZJ, Yang Z, Liu TF, Huang YB, Cao R. Microwave–Assisted Synthesis of a Series of Lanthanide Metal–Organic Frameworks and Gas Sorption Properties. Inorg. Chem. 2012; 51: 1813–1820.
  • [7] Cañadillas–Delgado L, Fabelo O, Pasán J, Julve M, Lloret F, Ruiz–Pérez C. All–cis–1,2,3,4,5,6–cyclohexanehexacarboxylate two–dimensional gadolinium(III) complexes: Synthesis, X–ray crystal structure and magnetic properties. Polyhedron 2010; 29: 188–195.
  • [8] Zhu HF, Fan J, Okamura T, Zhang ZH, Liu GX, Yu KB, Sun WY, Ueyama N. Metal−Organic Architectures of Silver(I), Cadmium(II), and Copper(II) with a Flexible Tricarboxylate Ligand. Inorg. Chem. 2006; 45: 3941–3948.
  • [9] Cao X, Yu L, Huang R. Two Ce–containing 3D metal–organic frameworks: In situ formation of ligand (DDPD). Journal of Solid State Chemistry 2014; 210: 74–78.
  • [10] Rodrigues CV, Luz LL, Dutra JDL, Junior SA, Malta OL, Gatto CC, Streit HC, Freire RO, Wickleder C, Rodrigues MO. Unusual photoluminescence properties of the 3D mixed–lanthanide–organic frameworks induced by dimeric structures: a theoretical and experimental approach. Phys. Chem. Chem. Phys. 2014; 16: 14858–14866.
  • [11] Lu Z, Wen L, Yao J, Zhu H, Meng Q. Two types of novel layer framework structures assembled from 5–sulfosalicylic acid and lanthanide ions. CrystEngComm, 2006; 8: 847–853.
  • [12] Zhang JL, Ji H, Wei YG, Wang Y, Wu NZ. Low-Temperature Synthesis of Superparamagnetic Nanocomposite Particles Composed of Platinum and Maghemite. J. Phys. Chem. C 2008; 112: 10688–10691.
  • [13] Cañadillas–Delgado L, Fabelo O, Pasan J, Delgado FS, Lloret F, Julve M, Ruiz–Perez C. Intramolecular ferro- and antiferromagnetic interactions in oxo-carboxylate bridged digadolinium(III) complexes. Dalton Trans. 2010; 39: 7286–7293.
  • [14] Dong LJ, Chu W, Zhu QL, Huang RD. Three Novel Homochiral Helical Metal−Organic Frameworks Based on Amino Acid Ligand: Syntheses, Crystal Structures, and Properties. Cryst. Growth Des. 2011; 11 (1): 93–99.
  • [15] Hashimoto M, Igawa S, Yashima M, Kawata I, Hoshino M, Osawa M. Highly Efficient Green Organic Light-Emitting Diodes Containing Luminescent Three-Coordinate Copper(I) Complexes. J. Am. Chem. Soc. 2011; 133 (37): 10348–10351.
  • [16] Dong LJ, Li XF, Cao J, Chu W, Huang RD. An α-Keggin polyoxometalate completely constructed from the late transition metal CoII as poly atom. Dalton Trans. 2013; 42: 1342–1345.
  • [17] Kentc CA, Liu D, Meyer TJ, Lin W. Amplified Luminescence Quenching of Phosphorescent Metal–Organic Frameworks. J. Am. Chem. Soc. 2012; 134 (9): 3991–3994.
  • [18] Lee YR, Kim J, Ahn WS. Synthesis of metal–organic frameworks: A mini review. Korean J. Chem. Eng. 2013; 30(9): 1667–1680.
  • [19] Lv YK, Feng YL, Cheng JW. Two new Cerium–Organic Frameworks with unusual network topologies constructed by racemic tartaric acid involving in situ reaction. Inorganic Chemistry Communications 2012; 15: 130–135.
  • [20] Hopa C, Cokay I. Synthesis, structural characterization and thermal properties of a new copper(II) one-dimensional coordination polymer based on bridging N,N′-bis¬(2-hy¬droxy-benzyl¬idene)-2,2-di¬methyl¬propane-1,3-di¬amine and dicyanamide ligands. Acta Crystallogr. Sect. C Struct. Chem. 2016; 72: 149–154.
  • [21] Yahsi Y, Ozbek H, Aygun M, Kara H. Crystal structure and photoluminescence properties of a new CdII coordination polymer catena-poly[bis¬[4-bromo-2-({[2-(pyrrolidin-1-yl)eth¬yl]imino}¬meth¬yl)phenolato-κ3N,N′,O]di-μ3-chlorido-di-μ2-chlorido-bis¬(methanol-κO)tri¬cadmium(II)]. Acta Cryst. 2016; C72: 426–431.
  • [22] Mohammadinasab R , Tabatabaee M, Kukovec BM, Aghaie H. The cerium(III) coordination polymer with mixed polycarboxylic acids. Preparation of the CeO2 nanoparticles by thermal decomposition of the polymer. Inorganica Chimica Acta 2013; 405: 368–373.
  • [23] Cañadillas–Delgado L, Pasán J, Fabelo O, Julve M, Lloret F, Ruiz–Pérez C. A step further in the comprehension of the magnetic coupling in gadolinium(III)–based carboxylate complexes. Polyhedron 2013; 52: 321–332.
  • [24] Ren MJ, Zhang Z, Zhao P, Zhang J. Three–Dimensional Metal–Organic Hybrid Material Bearing an Open–Framework Self–Assembled by Mononuclear Cerium Benzene Tetracarboxylate Complex. Asian Journal of Chemistry 2008; 20: 3687–3701.
  • [25] Oxford Diffraction Ltd., Version 1.171.31.2.
  • [26] SHELXTL, Rev. 5.0, Bruker AXS, Madison, WI, USA.
  • [27] MERCURY 1.4.2, Copyright from CCDC 2001–2007.
  • [28] John, D, Urland W. Crystal Structure and Magnetic Behaviour of the New Gadolinium Complex Compound Gd2(ClH2CCOO)6(bipy)2. Eur. J. Inorg. Chem. 2005; 2 (22): 4486–4489.
  • [29] Zhang H, Lin SY, Xue S, Wang C, Tang J. Acetato-bridged dinuclear lanthanide complexes with single molecule magnet behaviour for the Dy2 species. Dalton Trans. 2014; 43: 6262–6268.
  • [30] Hong XL, Li YZ, Hu H, Pan Y, Bai J, You XZ. Synthesis, Structure, Luminescence, and Water Induced Reversible Crystal-to-Amorphous Transformation Properties of Lanthanide(III) Benzene-1,4-dioxylacetates with a Three-Dimensional Framework. Crystal Growth & Design 2006; 6 (6): 1221-1226.
  • [31] Zhou RS, Ye L, Ding H, Song JF, Xu XY, Xu JQ. Syntheses, structures, luminescence, and magnetism of four 3D lanthanide 5–sulfosalicylates. Journal of Solid State Chemistry 2008; 181: 567–575.
  • [32] Zhao W, Zhang LJ, Zhao XL. Structural variations and photoluminescent properties of a series of metal–organic frameworks constructed from 5–(4–carboxybenzoylamino)–isophthalic acid. Journal of Solid State Chemistry 2013; 202: 250–256.
  • [33] Berti E, Cecconi F, Ghilardi CA, Midollini S. Isostructural organic–inorganic hybrids of P,P′-diphenyl-methylenediphosphinate (CH2(P(Ph)O2)2)2− with divalent transition metals. Inorg. Chem. Commun. 2002; 5: 1041–1043.
  • [34] Nakamoto K. Infrared and Raman Spectra of Inorganic and Coordination Compounds. A Wiley–Interscience Publication, John Wiley & Sons, Inc. 1986.
  • [35] Erkarslan U, Oylumluoglu G, Coban MB, Öztürk E, Kara H. Cyanide-bridged trinuclear MnIII–FeIII assembly: Crystal structure, magnetic and photoluminescence behavior. Inorganica Chim. Acta. 445, 57–61.
  • [36] Coban MB, Erkanslan U, Oylumluoglu G, Aygun M, Kara H. Hydrothermal synthesis, crystal structure and Photoluminescent properties; 3D Holmium(III) coordination polymer. Inorganica Chimica Acta 2016; 447: 87–91.
  • [37] Feng X, Feng YQ, Chen JJ, Ng SW, Wang LY, Guo JZ. Reticular three-dimensional 3d–4f frameworks constructed through substituted imidazole-dicarboxylate: syntheses, luminescence and magnetic properties study. Dalton Trans. 2014; 44: 804–816.
  • [38] Song XQ, Peng YQ, Cheng GQ, Wang XR, Liu PP, Xu WY. Substituted group-directed assembly of Zn(II) coordination complexes based on two new structural related pyrazolone based Salen ligands: Syntheses, structures and fluorescence properties. Inorganica Chim. Acta. 2015; 427: 13–21.
  • [39] Manjunatha MN, Dikundwar AG, Nagasundara, KR. Zn(II), Cd(II) and Hg(II) complexes with 1-(p-methoxybenzyl)-2-(p-methoxyphenyl)benzimidazole: Syntheses, structures and luminescence. Polyhedron 2011; 30: 1299–1304.
  • [40] Feng X, Liu L, Wang LY, Song HL, Shi ZQ, Wu XH, Ng SW. Lanthanide coordination polymers based on multi-donor ligand containing pyridine and phthalate moieties: Structures, luminescence and magnetic properties. Journal of Solid State Chemistry 2013; 206: 277–285.
  • [41] Feng X, Wang LY, Zhao JS, Wang JG, Weng NS, Liu B, Shi XG. Series of anion-directed lanthanide-rigid-flexible frameworks: syntheses, structures, luminescence and magnetic properties. CrystEngComm, 2010; 12: 774–783.
  • [42] Carnall WT. The Absorption and Fluorescence Spectra of Rare Earth Íons in Solution. North-Holland, Amsterdam, 1979.
  • [43] Oliveira CAF, Silva FF, Malvestiti I, Malta VRS, Dutra JDL, Costa Jr. NB, Freire RO, Alves Jr S. Synthesis, characterization, luminescent properties and theoretical study of two new coordination polymers containing lanthanide [Ce(III) or Yb(III)] and succinate ions. Journal of Molecular Structure 2013; 1041: 61–67.
  • [44] Wang P, Fan RG, Yang YL, Liu XR, Xiao P, Li XY, Hasi W, Cao WW. 1-D helical chain, 2-D layered network and 3-D porous lanthanide–organic frameworks based on multiple coordination sites of benzimidazole-5,6-dicarboxylic acid: synthesis, crystal structure, photoluminescence and thermal stability. CrystEngComm, 2013; 15: 4489–4506.
There are 44 citations in total.

Details

Subjects Engineering
Journal Section Articles
Authors

Yasemin Acar

Publication Date December 1, 2016
Published in Issue Year 2016 Volume: 17 Issue: 4

Cite

APA Acar, Y. (2016). Photoluminescence properties of Gd(III) and Ce(III) lanthanide based metal organic frameworks. Anadolu University Journal of Science and Technology A - Applied Sciences and Engineering, 17(4), 754-765. https://doi.org/10.18038/aubtda.267272
AMA Acar Y. Photoluminescence properties of Gd(III) and Ce(III) lanthanide based metal organic frameworks. AUJST-A. December 2016;17(4):754-765. doi:10.18038/aubtda.267272
Chicago Acar, Yasemin. “Photoluminescence Properties of Gd(III) and Ce(III) Lanthanide Based Metal Organic Frameworks”. Anadolu University Journal of Science and Technology A - Applied Sciences and Engineering 17, no. 4 (December 2016): 754-65. https://doi.org/10.18038/aubtda.267272.
EndNote Acar Y (December 1, 2016) Photoluminescence properties of Gd(III) and Ce(III) lanthanide based metal organic frameworks. Anadolu University Journal of Science and Technology A - Applied Sciences and Engineering 17 4 754–765.
IEEE Y. Acar, “Photoluminescence properties of Gd(III) and Ce(III) lanthanide based metal organic frameworks”, AUJST-A, vol. 17, no. 4, pp. 754–765, 2016, doi: 10.18038/aubtda.267272.
ISNAD Acar, Yasemin. “Photoluminescence Properties of Gd(III) and Ce(III) Lanthanide Based Metal Organic Frameworks”. Anadolu University Journal of Science and Technology A - Applied Sciences and Engineering 17/4 (December 2016), 754-765. https://doi.org/10.18038/aubtda.267272.
JAMA Acar Y. Photoluminescence properties of Gd(III) and Ce(III) lanthanide based metal organic frameworks. AUJST-A. 2016;17:754–765.
MLA Acar, Yasemin. “Photoluminescence Properties of Gd(III) and Ce(III) Lanthanide Based Metal Organic Frameworks”. Anadolu University Journal of Science and Technology A - Applied Sciences and Engineering, vol. 17, no. 4, 2016, pp. 754-65, doi:10.18038/aubtda.267272.
Vancouver Acar Y. Photoluminescence properties of Gd(III) and Ce(III) lanthanide based metal organic frameworks. AUJST-A. 2016;17(4):754-65.