Research Article
BibTex RIS Cite
Year 2017, Volume: 18 Issue: 2, 388 - 397, 30.06.2017
https://doi.org/10.18038/aubtda.295720

Abstract

References

  • Xia Y N, Yang P D, Sun Y G, Wu Y Y, Mayers B, Gates B, Yin Y, Kim F, Yan H. One-dimensional nanostructures: synthesis, characterization, and applications, Adv Mater 2003; 15: 353-389.
  • Gürmen S, Stopic S, Friedrich B. Synthesis of nanosized spherical cobalt powder by ultrasonic spray pyrolysis, Mater Res Bulletin 2006; 41: 1882-1890.
  • Noguero C. Physics and chemistry at oxide surfaces, Acta Crystallographica Section A 1997; 6: 855-856.
  • Kung H H. Transition Metal Oxides: Surface Chemistry and Catalysis, Amsterdam, Netherlands: Elsevier Science, 1989.
  • Henrich V E, Cox P A. The Surface Science of Metal Oxides, Cambridge, U.K: Cambridge University Press, 1994.
  • Fernandez-Garcia M, Martinez-Arias A, Hanson J C, Rodriguez J A. Nanostructured oxides in chemistry: Characterization and properties, Chem Rev 2004; 104: 4063-4104.
  • Shinde V R, Mahadik S B, Gujar T P, Lokhande C D. Supercapacitive cobalt oxide (Co3O4) thin films by spray pylrolysis, App Surf Sci 2006; 252: 7487-7492.
  • Jimenez V M, Fernandez A, Espinos J P, Gonzalez-Elipe A R. The state of the oxygen at the surface of polycrystalline cobalt oxide, J Elec Spe & Related Phenomena 1995; 71: 61-71.
  • Tanaka M, Mukai M , Fujimori Y, Kondoh M, Tasaka Y, Baba H, Usami S. Transition metal oxide films prepared by pulsed laser deposition for atomic beam detection, Thin Solid Films 1996; 281-282: 453-456.
  • Louardi A, Rmili A, Ouachtari F, Bouaoud A, Elidrissi B, Erguig H. Characterization of cobalt oxide thin films prepared by a facile spray pyrolysis technique using perfume atomizer, J Alloys Compd 2011; 509: 9183-9189.
  • Saputra E , Muhammad S, Sun H, Ang H M, Tade M O, Wang S A. Comparative Study of Spinel Structured Mn3O4, Co3O4 and Fe3O4 Nanoparticles in Catalytic Oxidation of Phenolic Contaminants in Aqueous Solutions, J Colloid Interface Sci 2013; 407: 467-473.
  • Tomic-Tucakovic B, Majstorovic D, Jelic D, Mentus S. Thermogravimetric study of the kinetics of Co3O4 reduction by hydrogen, Thermochimica Acta 2012; 541: 15-24.
  • Yua Z, Dub J, Guoc S, Zhanga J, Matsumoto Y. CoS thin films prepared with modified chemical bath deposition, Thin Solid Films 2002; 415: 173-176.
  • Li Y, Huang K, Yao Z, Liu S, Qing X. Co3O4 thin film prepared by a chemical bath deposition for electrochemical capacitors, Electrochimica Acta 2011; 56: 2140-2144.
  • Kung C W, Lin C Y, Li T J, Vittal R, Ho K C. Synthesis of Co3O4 thin films by chemical bath deposition in the presence of different anions and application to H2O2 sensing, Procedia Engineering 2011; 25: 847-850.
  • Mane S T, Kamble S S, Deshmukh L P. Cobalt sulphide thin films: Chemical bath deposition, growth and properties, Mater Lett 2011; 65: 2639–2641.
  • Cheng C S, Serizawa M, Sakata H, Hirayama T. Electrical conductivity of Co3O4 films prepared by chemical vapour deposition, Mater Chem & Phys 1998; 53: 225-230.
  • Shalini K, Mane A U, Shivashankar S A, Rajeswari M, Choopun S. Epitaxial growth of Co3O4 films by low temperature low pressure chemical vapour deposition, J of Cry Growth 2001; 231: 242-247.
  • Jana S, Kumar Bhar S, Mukherjee N, Mondal A. Electrodeposition of polymer encapsulated cobalt sulfide thin films: search for a frequency switching material, Mater Lett, 2013; 109: 51-54.
  • Chae S Y, Hwang Y J, Choi J H, Joo O S. Cobalt sulfide thin films for counter electrodes of dye-sensitized solar cells with cobalt complex based electrolyte, Electrochimica Acta 2013; 114: 745-749.
  • Shelke P N, Khollam Y B, Hawaldar R R, Gunjal S D, Udawant R R, Sarode M T, Takwale M G, Mohite K C. Synthesis, characterization and optical properties of selective Co3O4 films 1-D interlinked nanowires prepared by spray pyrolysis technique, Fuel 2013; 112: 542-549.
  • Mariammal R N, Ramachandran K, Kalaiselvan G, Arumugam S, Renganathan B, Sastikumar D. Effect of magnetism on the ethanol sensitivity of undoped and Mn-doped CuO nanoflakes, Appl Surf Sci 2013; 270: 545-552.
  • Özer T, Köse S. Some physical properties of Cd1-xSnxS films used as window layer in heterojunction solar cells, Inter J Hyd Energy 2009; 34: 5186-5190.
  • B.D. Cullity, S.R. Stock, Elements of X-ray Diffraction, New Jersey, USA: Prentice-Hall, 2001.
  • Caglar M, Ilican S, Caglar Y, Yakuphanoglu F. Electrical conductivity and optical properties of ZnO nanostructured thin film, App Surf Sci 2009; 255: 4491-4496.
  • Caglar M, Caglar Y, Ilican S. Investigation of the effect of Mg doping for improvements of optical and electrical properties, Physica B 2016; 485: 6-13.
  • Yakuphanoglu F, Ilican S, Caglar M, Caglar Y. Microstructure and electro-optical properties of sol–gel derived Cd-doped ZnO films, Superlattices and Microstructures 2010; 47: 732-743.
  • Girisun T C S, Dhanuskodi S. Linear and Nonlinear Optical Properties of Tristhiourea Zinc Sulphate (ZTS) Single, Cry Resear Tech, 2009; 44: 1297-1302.
  • Aksay S, Polat M, Ozer T, Kose S, Gurbuz G. Investigations on structural, vibrational, morphological and optical properties of CdS and CdS/Co films by ultrasonic spray pyrolysis, App Surf Sci 2011; 257: 10072-10077.
  • Yuan Y F, Xia X H, Wu J B, Gud J S, Chen Y B, Guo SY. Electrochromism in mesoporous nanowall cobalt oxide thin films prepared via lyotropic liquid crystal media with electrodeposition, J of Membrane Sci 2010; 364: 298-303.

OPTICAL VIBRATIONAL AND MORPHOLOGICAL PROPERTIES OF S-Co3O4 NANOSTRUCTURED THIN FILM

Year 2017, Volume: 18 Issue: 2, 388 - 397, 30.06.2017
https://doi.org/10.18038/aubtda.295720

Abstract

Sulphur
doped Co3O4 (S-Co3O4)
nanostructured thin film has been produced by ultrasonic spray pyrolysis (USP)
method. The film has been characterized by X-ray diffraction (XRD),
energy-dispersive X-ray spectroscopy (EDAX), Fourier transform infrared (FT-IR)
and Raman spectroscopy. The surface appearance of the film was obtained using
scanning electron microscope (SEM). Optical reflectance and transmittance
spectra were recorded with a double beam spectrophotometer equipped with an
integrating sphere. The optical constants such as refractive index, extinction
coefficient, optical conductivity, real and imaginary parts of the dielectric
constant of the film were calculated. The XRD pattern shows that the film has
only clear diffraction peaks around 2θ = 29.26o corresponding to the
(111) plane of cubic Co3O4. The crystallite size was
calculated to be approximately 24 nm. The Raman measurements revealed four
peaks of Co3O4. Infrared spectrum of the film has been
investigated in 500–3000 cm−1 region.

References

  • Xia Y N, Yang P D, Sun Y G, Wu Y Y, Mayers B, Gates B, Yin Y, Kim F, Yan H. One-dimensional nanostructures: synthesis, characterization, and applications, Adv Mater 2003; 15: 353-389.
  • Gürmen S, Stopic S, Friedrich B. Synthesis of nanosized spherical cobalt powder by ultrasonic spray pyrolysis, Mater Res Bulletin 2006; 41: 1882-1890.
  • Noguero C. Physics and chemistry at oxide surfaces, Acta Crystallographica Section A 1997; 6: 855-856.
  • Kung H H. Transition Metal Oxides: Surface Chemistry and Catalysis, Amsterdam, Netherlands: Elsevier Science, 1989.
  • Henrich V E, Cox P A. The Surface Science of Metal Oxides, Cambridge, U.K: Cambridge University Press, 1994.
  • Fernandez-Garcia M, Martinez-Arias A, Hanson J C, Rodriguez J A. Nanostructured oxides in chemistry: Characterization and properties, Chem Rev 2004; 104: 4063-4104.
  • Shinde V R, Mahadik S B, Gujar T P, Lokhande C D. Supercapacitive cobalt oxide (Co3O4) thin films by spray pylrolysis, App Surf Sci 2006; 252: 7487-7492.
  • Jimenez V M, Fernandez A, Espinos J P, Gonzalez-Elipe A R. The state of the oxygen at the surface of polycrystalline cobalt oxide, J Elec Spe & Related Phenomena 1995; 71: 61-71.
  • Tanaka M, Mukai M , Fujimori Y, Kondoh M, Tasaka Y, Baba H, Usami S. Transition metal oxide films prepared by pulsed laser deposition for atomic beam detection, Thin Solid Films 1996; 281-282: 453-456.
  • Louardi A, Rmili A, Ouachtari F, Bouaoud A, Elidrissi B, Erguig H. Characterization of cobalt oxide thin films prepared by a facile spray pyrolysis technique using perfume atomizer, J Alloys Compd 2011; 509: 9183-9189.
  • Saputra E , Muhammad S, Sun H, Ang H M, Tade M O, Wang S A. Comparative Study of Spinel Structured Mn3O4, Co3O4 and Fe3O4 Nanoparticles in Catalytic Oxidation of Phenolic Contaminants in Aqueous Solutions, J Colloid Interface Sci 2013; 407: 467-473.
  • Tomic-Tucakovic B, Majstorovic D, Jelic D, Mentus S. Thermogravimetric study of the kinetics of Co3O4 reduction by hydrogen, Thermochimica Acta 2012; 541: 15-24.
  • Yua Z, Dub J, Guoc S, Zhanga J, Matsumoto Y. CoS thin films prepared with modified chemical bath deposition, Thin Solid Films 2002; 415: 173-176.
  • Li Y, Huang K, Yao Z, Liu S, Qing X. Co3O4 thin film prepared by a chemical bath deposition for electrochemical capacitors, Electrochimica Acta 2011; 56: 2140-2144.
  • Kung C W, Lin C Y, Li T J, Vittal R, Ho K C. Synthesis of Co3O4 thin films by chemical bath deposition in the presence of different anions and application to H2O2 sensing, Procedia Engineering 2011; 25: 847-850.
  • Mane S T, Kamble S S, Deshmukh L P. Cobalt sulphide thin films: Chemical bath deposition, growth and properties, Mater Lett 2011; 65: 2639–2641.
  • Cheng C S, Serizawa M, Sakata H, Hirayama T. Electrical conductivity of Co3O4 films prepared by chemical vapour deposition, Mater Chem & Phys 1998; 53: 225-230.
  • Shalini K, Mane A U, Shivashankar S A, Rajeswari M, Choopun S. Epitaxial growth of Co3O4 films by low temperature low pressure chemical vapour deposition, J of Cry Growth 2001; 231: 242-247.
  • Jana S, Kumar Bhar S, Mukherjee N, Mondal A. Electrodeposition of polymer encapsulated cobalt sulfide thin films: search for a frequency switching material, Mater Lett, 2013; 109: 51-54.
  • Chae S Y, Hwang Y J, Choi J H, Joo O S. Cobalt sulfide thin films for counter electrodes of dye-sensitized solar cells with cobalt complex based electrolyte, Electrochimica Acta 2013; 114: 745-749.
  • Shelke P N, Khollam Y B, Hawaldar R R, Gunjal S D, Udawant R R, Sarode M T, Takwale M G, Mohite K C. Synthesis, characterization and optical properties of selective Co3O4 films 1-D interlinked nanowires prepared by spray pyrolysis technique, Fuel 2013; 112: 542-549.
  • Mariammal R N, Ramachandran K, Kalaiselvan G, Arumugam S, Renganathan B, Sastikumar D. Effect of magnetism on the ethanol sensitivity of undoped and Mn-doped CuO nanoflakes, Appl Surf Sci 2013; 270: 545-552.
  • Özer T, Köse S. Some physical properties of Cd1-xSnxS films used as window layer in heterojunction solar cells, Inter J Hyd Energy 2009; 34: 5186-5190.
  • B.D. Cullity, S.R. Stock, Elements of X-ray Diffraction, New Jersey, USA: Prentice-Hall, 2001.
  • Caglar M, Ilican S, Caglar Y, Yakuphanoglu F. Electrical conductivity and optical properties of ZnO nanostructured thin film, App Surf Sci 2009; 255: 4491-4496.
  • Caglar M, Caglar Y, Ilican S. Investigation of the effect of Mg doping for improvements of optical and electrical properties, Physica B 2016; 485: 6-13.
  • Yakuphanoglu F, Ilican S, Caglar M, Caglar Y. Microstructure and electro-optical properties of sol–gel derived Cd-doped ZnO films, Superlattices and Microstructures 2010; 47: 732-743.
  • Girisun T C S, Dhanuskodi S. Linear and Nonlinear Optical Properties of Tristhiourea Zinc Sulphate (ZTS) Single, Cry Resear Tech, 2009; 44: 1297-1302.
  • Aksay S, Polat M, Ozer T, Kose S, Gurbuz G. Investigations on structural, vibrational, morphological and optical properties of CdS and CdS/Co films by ultrasonic spray pyrolysis, App Surf Sci 2011; 257: 10072-10077.
  • Yuan Y F, Xia X H, Wu J B, Gud J S, Chen Y B, Guo SY. Electrochromism in mesoporous nanowall cobalt oxide thin films prepared via lyotropic liquid crystal media with electrodeposition, J of Membrane Sci 2010; 364: 298-303.
There are 30 citations in total.

Details

Subjects Engineering
Journal Section Articles
Authors

Tülay Hurma

Publication Date June 30, 2017
Published in Issue Year 2017 Volume: 18 Issue: 2

Cite

APA Hurma, T. (2017). OPTICAL VIBRATIONAL AND MORPHOLOGICAL PROPERTIES OF S-Co3O4 NANOSTRUCTURED THIN FILM. Anadolu University Journal of Science and Technology A - Applied Sciences and Engineering, 18(2), 388-397. https://doi.org/10.18038/aubtda.295720
AMA Hurma T. OPTICAL VIBRATIONAL AND MORPHOLOGICAL PROPERTIES OF S-Co3O4 NANOSTRUCTURED THIN FILM. AUJST-A. June 2017;18(2):388-397. doi:10.18038/aubtda.295720
Chicago Hurma, Tülay. “OPTICAL VIBRATIONAL AND MORPHOLOGICAL PROPERTIES OF S-Co3O4 NANOSTRUCTURED THIN FILM”. Anadolu University Journal of Science and Technology A - Applied Sciences and Engineering 18, no. 2 (June 2017): 388-97. https://doi.org/10.18038/aubtda.295720.
EndNote Hurma T (June 1, 2017) OPTICAL VIBRATIONAL AND MORPHOLOGICAL PROPERTIES OF S-Co3O4 NANOSTRUCTURED THIN FILM. Anadolu University Journal of Science and Technology A - Applied Sciences and Engineering 18 2 388–397.
IEEE T. Hurma, “OPTICAL VIBRATIONAL AND MORPHOLOGICAL PROPERTIES OF S-Co3O4 NANOSTRUCTURED THIN FILM”, AUJST-A, vol. 18, no. 2, pp. 388–397, 2017, doi: 10.18038/aubtda.295720.
ISNAD Hurma, Tülay. “OPTICAL VIBRATIONAL AND MORPHOLOGICAL PROPERTIES OF S-Co3O4 NANOSTRUCTURED THIN FILM”. Anadolu University Journal of Science and Technology A - Applied Sciences and Engineering 18/2 (June 2017), 388-397. https://doi.org/10.18038/aubtda.295720.
JAMA Hurma T. OPTICAL VIBRATIONAL AND MORPHOLOGICAL PROPERTIES OF S-Co3O4 NANOSTRUCTURED THIN FILM. AUJST-A. 2017;18:388–397.
MLA Hurma, Tülay. “OPTICAL VIBRATIONAL AND MORPHOLOGICAL PROPERTIES OF S-Co3O4 NANOSTRUCTURED THIN FILM”. Anadolu University Journal of Science and Technology A - Applied Sciences and Engineering, vol. 18, no. 2, 2017, pp. 388-97, doi:10.18038/aubtda.295720.
Vancouver Hurma T. OPTICAL VIBRATIONAL AND MORPHOLOGICAL PROPERTIES OF S-Co3O4 NANOSTRUCTURED THIN FILM. AUJST-A. 2017;18(2):388-97.