Research Article
BibTex RIS Cite

Assessment on The Accuracy of Piezoelectric Property Calculations of Single Layer Two Dimensional Hexagonal Crystals

Year 2017, Volume: 18 Issue: 3, 632 - 639, 30.09.2017
https://doi.org/10.18038/aubtda.310298

Abstract

The finite difference and the density functional
perturbation theory based piezoelectric property calculation methods are
applied to the novel two dimensional hexagonal materials named as group II-VI
monolayers and transition metal dichalcogenides for the purposes of comparison.
The clamped- and relaxed- ion coefficients have been calculated separately to test
the accuracy of both methods on electronic and ionic piezoelectric response contributions.
While there is no significant difference between the clamped-ion piezoelectric
coefficients calculated with these two methods, a notable difference between
the values for relaxed-ion piezoelectric coefficients are determined. Considering
the results of the density functional perturbation theory given in the previous
applications, it has been determined that the consistency of the finite difference
method in the ionic contribution calculation do not provide reliable results for
some 2D materials. We have predicted that the atomic relaxation for different
strain values is not adequate to achieve accurate results for ionic
contribution of piezoelectric coefficient. However, on the contrary to the explicit difference in the coefficients calculated
with two different approaches, our results clearly show that the piezoelectric
potentials of the considered materials can be determined accurately and
reliably by both methods. 

References

  • de Jong M, Chen W, Geerlings H, Asta M, Persson K. A. A database to enable discovery and design of piezoelectric materials. Scientific Data 2015; 2: 150053
  • Morten, B, De Cicco G, Prudenziati M. Resonant Pressure Sensor Based on Piezoelectric Properties of Ferroelectric. Thick Films. Sens. Actuators A 1992; 31: 153-158.
  • Jaffe H. Berlincourt D. A, Piezoelectric Transducer. Materials. Proc. IEEE 1965; 53: 1372-1386.
  • Wang Z. L, Song J. H, Piezoelectric Nanogenerators Based on Zinc Oxide Nanowire Arrays. Science 2006; 312: 242-246.
  • Lopez-Suarez M, Pruneda M, Abadal G, Rurali R. Piezoelectric Monolayers as Nonlinear Energy Harvesters. Nanotechnology 2014; 25: 175401-175405.
  • Wu W, Wang L, Li Y, Zhang F, Lin L, Niu S, Chenet D, Zhang X, Hao Y, Heinz T. F, Hone J, Wang Z. L. Piezoelectricity of Single-Atomic-Layer MoS2 for Energy Conversion and Piezotronics. Nature 2014; 514: 470-474.
  • Blonsky M. N, Zhuang H. L, Singh A. K, Hennig R. G. Ab Initio Prediction of Piezoelectricity in Two-Dimensional Materials. ACS Nano 2015; 9: 9885-9891.
  • Alyörük M. M, Aierken Y, Çakır D, Peeters F. M, Sevik C. Promising Piezoelectric Performance of Single Layer Transition-Metal Dichalcogenides and Dioxides. J. Phys. Chem. C 2015; 119: 23231- 23237.
  • Fei R, Li W, Li J, Yang L. Giant Piezoelectricity of Monolayer Group IV Monochalcogenides: SnSe, SnS, GeSe, and GeS. Appl. Phys. Lett. 2015; 107: 173104-173108.
  • Li W, Li J. Piezoelectricity in Two-Dimensional Group-III Monochalcogenides. Nano Res. 2015; 8: 3796-3802.
  • Gomes L. C, Carvalho A, Castro Neto A. H. Enhanced Piezoelectricity and Modified Dielectric Screening of Two-Dimensional Group-IV Monochalcogenides. Phys. Rev. B. 2015; 92: 214103.
  • Zhu H, Wang Y, Xiao J, Liu M, Xiong S, Wong Z. J, Ye Z, Ye Y, Yin X, Zhang X. Observation of Piezoelectricity in Free- Standing Monolayer MoS2. Nat. Nanotechnol. 2014; 10: 151-155.
  • Sevik C, Çakır D, Gülseren O, Peeters F. M. Peculiar Piezoelectric Properties of Soft Two-Dimensional Materials. J. Phys. Chem. C 2016; 120: 13948-13953.
  • Duerloo K A N, Ong M T, Reed E J, Intrinsic Piezoelectricity in Two-Dimensional Materials. J. Phys. Chem. Lett. 2012; 3: 2871-2876.
  • Nunes R W, Gonze X. Berry-Phase Treatment of the Homogeneous Electric Field Perturbation in Insulators. Phys. Rev. B. 2001; 63: 155107.
  • Kresse G, Hafner J. Ab Initio Molecular Dynamics for Liquid Metals. Phys. Rev. B. 1993; 47: 558-561.
  • Wu X, Vanderbilt D, Hamann D R, Systematic Treatment of Displacements, Strains, And Electric Fields in Density-Functional Perturbation Theory. Phys. Rev. B. 2005; 72: 035105.
  • Perdew J P, Burke K, Ernzerhof M. Generalized Gradient Approximation Made Simple. Phys. Rev. Lett. 1996; 77: 3865-3868.
  • Monkhorst H J, Pack J D, Special Points for Brillouin-Zone Integrations. Phys. Rev. B. 1976; 13: 5188-5192.
  • Zheng H, Li X B, Chen N K, Xie S Y, Tian W Q, Chen Y, Xia H, Zhang S B, Sun H B, Monolayer II-VI Semiconductors: A First-Principles Prediction. Phys. Rev. B. 2015; 92: 115307.
  • Behmann R, Elastic and Piezoelectric Constants of alpha-Quartz. Phys. Rev. 1958; 110: 1060-1061.
  • Lueng C M, Chan H L W, Surya C, Choy C L. Piezoelectric Coefficient of Aluminum Nitride and Gallium Nitride. J. Appl. Phys. 2000; 88: 5360-5363.
Year 2017, Volume: 18 Issue: 3, 632 - 639, 30.09.2017
https://doi.org/10.18038/aubtda.310298

Abstract

References

  • de Jong M, Chen W, Geerlings H, Asta M, Persson K. A. A database to enable discovery and design of piezoelectric materials. Scientific Data 2015; 2: 150053
  • Morten, B, De Cicco G, Prudenziati M. Resonant Pressure Sensor Based on Piezoelectric Properties of Ferroelectric. Thick Films. Sens. Actuators A 1992; 31: 153-158.
  • Jaffe H. Berlincourt D. A, Piezoelectric Transducer. Materials. Proc. IEEE 1965; 53: 1372-1386.
  • Wang Z. L, Song J. H, Piezoelectric Nanogenerators Based on Zinc Oxide Nanowire Arrays. Science 2006; 312: 242-246.
  • Lopez-Suarez M, Pruneda M, Abadal G, Rurali R. Piezoelectric Monolayers as Nonlinear Energy Harvesters. Nanotechnology 2014; 25: 175401-175405.
  • Wu W, Wang L, Li Y, Zhang F, Lin L, Niu S, Chenet D, Zhang X, Hao Y, Heinz T. F, Hone J, Wang Z. L. Piezoelectricity of Single-Atomic-Layer MoS2 for Energy Conversion and Piezotronics. Nature 2014; 514: 470-474.
  • Blonsky M. N, Zhuang H. L, Singh A. K, Hennig R. G. Ab Initio Prediction of Piezoelectricity in Two-Dimensional Materials. ACS Nano 2015; 9: 9885-9891.
  • Alyörük M. M, Aierken Y, Çakır D, Peeters F. M, Sevik C. Promising Piezoelectric Performance of Single Layer Transition-Metal Dichalcogenides and Dioxides. J. Phys. Chem. C 2015; 119: 23231- 23237.
  • Fei R, Li W, Li J, Yang L. Giant Piezoelectricity of Monolayer Group IV Monochalcogenides: SnSe, SnS, GeSe, and GeS. Appl. Phys. Lett. 2015; 107: 173104-173108.
  • Li W, Li J. Piezoelectricity in Two-Dimensional Group-III Monochalcogenides. Nano Res. 2015; 8: 3796-3802.
  • Gomes L. C, Carvalho A, Castro Neto A. H. Enhanced Piezoelectricity and Modified Dielectric Screening of Two-Dimensional Group-IV Monochalcogenides. Phys. Rev. B. 2015; 92: 214103.
  • Zhu H, Wang Y, Xiao J, Liu M, Xiong S, Wong Z. J, Ye Z, Ye Y, Yin X, Zhang X. Observation of Piezoelectricity in Free- Standing Monolayer MoS2. Nat. Nanotechnol. 2014; 10: 151-155.
  • Sevik C, Çakır D, Gülseren O, Peeters F. M. Peculiar Piezoelectric Properties of Soft Two-Dimensional Materials. J. Phys. Chem. C 2016; 120: 13948-13953.
  • Duerloo K A N, Ong M T, Reed E J, Intrinsic Piezoelectricity in Two-Dimensional Materials. J. Phys. Chem. Lett. 2012; 3: 2871-2876.
  • Nunes R W, Gonze X. Berry-Phase Treatment of the Homogeneous Electric Field Perturbation in Insulators. Phys. Rev. B. 2001; 63: 155107.
  • Kresse G, Hafner J. Ab Initio Molecular Dynamics for Liquid Metals. Phys. Rev. B. 1993; 47: 558-561.
  • Wu X, Vanderbilt D, Hamann D R, Systematic Treatment of Displacements, Strains, And Electric Fields in Density-Functional Perturbation Theory. Phys. Rev. B. 2005; 72: 035105.
  • Perdew J P, Burke K, Ernzerhof M. Generalized Gradient Approximation Made Simple. Phys. Rev. Lett. 1996; 77: 3865-3868.
  • Monkhorst H J, Pack J D, Special Points for Brillouin-Zone Integrations. Phys. Rev. B. 1976; 13: 5188-5192.
  • Zheng H, Li X B, Chen N K, Xie S Y, Tian W Q, Chen Y, Xia H, Zhang S B, Sun H B, Monolayer II-VI Semiconductors: A First-Principles Prediction. Phys. Rev. B. 2015; 92: 115307.
  • Behmann R, Elastic and Piezoelectric Constants of alpha-Quartz. Phys. Rev. 1958; 110: 1060-1061.
  • Lueng C M, Chan H L W, Surya C, Choy C L. Piezoelectric Coefficient of Aluminum Nitride and Gallium Nitride. J. Appl. Phys. 2000; 88: 5360-5363.
There are 22 citations in total.

Details

Subjects Engineering
Journal Section Articles
Authors

Cem Sevik

Publication Date September 30, 2017
Published in Issue Year 2017 Volume: 18 Issue: 3

Cite

APA Sevik, C. (2017). Assessment on The Accuracy of Piezoelectric Property Calculations of Single Layer Two Dimensional Hexagonal Crystals. Anadolu University Journal of Science and Technology A - Applied Sciences and Engineering, 18(3), 632-639. https://doi.org/10.18038/aubtda.310298
AMA Sevik C. Assessment on The Accuracy of Piezoelectric Property Calculations of Single Layer Two Dimensional Hexagonal Crystals. AUJST-A. September 2017;18(3):632-639. doi:10.18038/aubtda.310298
Chicago Sevik, Cem. “Assessment on The Accuracy of Piezoelectric Property Calculations of Single Layer Two Dimensional Hexagonal Crystals”. Anadolu University Journal of Science and Technology A - Applied Sciences and Engineering 18, no. 3 (September 2017): 632-39. https://doi.org/10.18038/aubtda.310298.
EndNote Sevik C (September 1, 2017) Assessment on The Accuracy of Piezoelectric Property Calculations of Single Layer Two Dimensional Hexagonal Crystals. Anadolu University Journal of Science and Technology A - Applied Sciences and Engineering 18 3 632–639.
IEEE C. Sevik, “Assessment on The Accuracy of Piezoelectric Property Calculations of Single Layer Two Dimensional Hexagonal Crystals”, AUJST-A, vol. 18, no. 3, pp. 632–639, 2017, doi: 10.18038/aubtda.310298.
ISNAD Sevik, Cem. “Assessment on The Accuracy of Piezoelectric Property Calculations of Single Layer Two Dimensional Hexagonal Crystals”. Anadolu University Journal of Science and Technology A - Applied Sciences and Engineering 18/3 (September 2017), 632-639. https://doi.org/10.18038/aubtda.310298.
JAMA Sevik C. Assessment on The Accuracy of Piezoelectric Property Calculations of Single Layer Two Dimensional Hexagonal Crystals. AUJST-A. 2017;18:632–639.
MLA Sevik, Cem. “Assessment on The Accuracy of Piezoelectric Property Calculations of Single Layer Two Dimensional Hexagonal Crystals”. Anadolu University Journal of Science and Technology A - Applied Sciences and Engineering, vol. 18, no. 3, 2017, pp. 632-9, doi:10.18038/aubtda.310298.
Vancouver Sevik C. Assessment on The Accuracy of Piezoelectric Property Calculations of Single Layer Two Dimensional Hexagonal Crystals. AUJST-A. 2017;18(3):632-9.