Araştırma Makalesi
BibTex RIS Kaynak Göster

(HCl)2(CH3OH)2(X) (X= NH3 VEYA H2O) KÜMELERİNDE PROTON DİNAMİĞİNİN TEORİK OLARAK İNCELENMESİ

Yıl 2018, Cilt: 6 Sayı: 1, 8 - 21, 30.04.2018
https://doi.org/10.20290/aubtdb.319402

Öz




















Proton transfer
in H-bonded molecular systems plays a vital role in many research areas such as
biological, technological and atmospherical. The aim of this study is to
investigate the dynamics of proton transfer along the methanol wires by
addition of NH3 or H2O to the methanol ring at low
temperatures. On-the-fly molecular dynamics as implemented in the density
functional code QUICKSTEP which is part of CP2K package were used in this
study. In NH3 containing methanol clusters, the proton is localized
on NH3. On the other hand, the proton is delocalized along the
methanol wires containing water molecule.

Kaynakça

  • [1] Kobayashi, C., Saito, S., Ohmine, I. Mechanism of fast proton transfer in ice: Potential energy surface and reaction coordinate analyses. J Chem Phys 2000; 113: 9090.
  • [2] Sadeghi, R. R., Cheng, H.-P. The dynamics of proton transfer in a water chain. J Chem Phys 1999; 111:2086.
  • [3] Lapid, H., Agmon, N., Petersen, M. K., Voth, G. A. A bond-order analysis of the mechanism for hydrated proton mobility in liquid water. J Chem Phys 2005; 122:014506.
  • [4] Marx, D., Tuckerman, M. E., Hutter, J., Parinello, M. The nature of the hydrated excess proton in water. Nature 1999; 397:601.
  • [5] Falk, M., Whalley, E. Infrared Spectra of Methanol and Deuterated Methanols in Gas, Liquid, and Solid Phases. J Chem Phys 1961; 34:1554.
  • [6] Buck, U., Huiken, F. Infrared Spectroscopy of Size-Selected Water and Methanol Clusters. Chem Rev 2000; 100:3863.
  • [7] Andrzejewska A., Sadlej, J. Ab initio study on mixed methanol–hydrogen chloride dimer and trimers. Chem Phys Lett 2004; 393:228.
  • [8] Fujii, A., Enomoto, S., Miyazaki, M., Mikami, N. Morphology of Protonated Methanol Clusters: An Infrared Spectroscopic Study of Hydrogen Bond Networks of H+(CH3OH) (n = 4−15). J Phys Chem A 2005; 109:138.
  • [9] Chang, . H.-C., Jiang, J.-C., Lin, S. H., Lee, Y. T., Chang, H.-C. Isomeric Transitions between Linear and Cyclic H+(CHOH)4-5:  Implications for Proton Migration in Liquid Methanol. J Phys Chem A 1999; 103:2941.
  • [10] Morrone, J. A., Tuckerman, M. E. Ab initio molecular dynamics study of proton mobility in liquid methanol. J Chem Phys 2002; 117:4403.
  • [11] Uras-Aytemiz, N., Sadlej, J., Devlin, J. P., Buch, V. HCl solvation in methanol clusters and nanoparticles: Evidence for proton-wires. Chem Phys Letters 2006; 422:179-183.
  • [12] Wu, C.-C., Jiang, J. C., Boo, D. W., Lin, S. H., Lee, Y. T., Chang, H.-C. Behaviors of an excess proton in solute-containing water clusters: A case study of H+(CH3OH)(H2O)1-6. J Chem Phys 2000; 112: 176.
  • [13] Chaudhuri, C., Jiang, J. C., Wang, X., Lee, Y. T., Chang, H.-C. Identification of CH3OH2+ and H3O+-centered cluster isomers from fragment-dependent vibrational predissociation spectra of H+(CH3OH)4H2O. J Chem Phys 2000; 112:7279.
  • [14] Jiang, J. C., Chaudhuri, C., Lee, Y. T., Chang, H.-C. Hydrogen Bond Rearrangements and Interconversions of H+(CH3OH)4H2O Cluster Isomers. J Phys Chem A 2002; 106:10937.
  • [15] Wu, C.-C., Chaudhuri, C., Jiang, J. C., Lee, Y. T., Chang, H.-C. Structural Isomerism and Competitive Proton Solvation between Methanol and Water in H+(CH3OH)m(H2O)n, m + n = 4. J Phys Chem A 2004; 108:2859.
  • [16] Li, R.-J., Li, Z.-R., Wu, D., Chen, W., Li, Y., Wang, B.-Q., Sun, C.-C. Proton transfer of NH3-HCl catalyzed by only one molecule. J Phys Chem A 2005; 109: 629.
  • [17] Kulczycka, K., Kalbarczyk, P., Aytemiz, N., Sadlej, J., Interaction in the Ternary Complexes of HCl–Methanol–X, X = H2O or NH3: Ab Initio Calculations and On-The-Fly Molecular Dynamics. J Phys Chem A 2008; 112:3870-3878.
  • [18] https://www.cp2k.org.
  • [19] Krack, M., Mohammed, F, Parinello, M., VandeVondele, J., Chassaing, T., Hutter, J. QUICKSTEP: Fast and accurate density functional calculations using a mixed Gaussian and plane waves approach. Comp Phys Comm 2005; 167:103.
  • [20] Frisch, M. J. et al.; Gaussian 09 Revision E. 01, Gaussian, Inc, Wallingford CT, 2016.
  • [21] Mo, O., Yanez, M., Elguero, J. Study of the methanol trimer potential energy surface J Chem Phys 1997; 107:3592.
  • [22] Buch, V., Mohamed, F., Parrinello, M., Devlin, J. P. Elusive structure of HCl monohydrate J Chem Phys 2007; 126:074503.
  • [23] Zundel, G. Hydrogen bonds with large proton polarizability and proton transfer processes in electrochemistry and biology. Adv Chem Phys 2000; 111:1.

(HCl)2(CH3OH)2(X)k (X= NH3 veya H2O) Kümelerinde Proton Dinamiğinin Teorik Olarak İncelenmesi

Yıl 2018, Cilt: 6 Sayı: 1, 8 - 21, 30.04.2018
https://doi.org/10.20290/aubtdb.319402

Öz

Hidrojen bağlı sistemlerde proton
transferi, özellikle biyolojik, teknolojik ve atmosferik olaylarda önemli rol
oynar. Bu çalışmanın amacı, düşük sıcaklılarda metanol zincirlerine proton
afinitesi metanol den küçük olan H2O ve metanol den büyük olan NH3
ilavesi ile proton dinamiğinin methanol zincirleri boyunca değişimini
incelemektir. Çalışmada, CP2K paket programının bir parçası olan on the fly
moleküler dinamik hesaplamaların bulunduğu yoğunluk fonksiyon kodu olan
QUICSTEP paket programı kullanılmıştır. NH3 içeren metanol
kümelerinde, proton NH3 üzerine localize olurken; su molekülü içeren
kümelerde proton metanol zincirleri boyunca delocalize olmaktadır. 

Kaynakça

  • [1] Kobayashi, C., Saito, S., Ohmine, I. Mechanism of fast proton transfer in ice: Potential energy surface and reaction coordinate analyses. J Chem Phys 2000; 113: 9090.
  • [2] Sadeghi, R. R., Cheng, H.-P. The dynamics of proton transfer in a water chain. J Chem Phys 1999; 111:2086.
  • [3] Lapid, H., Agmon, N., Petersen, M. K., Voth, G. A. A bond-order analysis of the mechanism for hydrated proton mobility in liquid water. J Chem Phys 2005; 122:014506.
  • [4] Marx, D., Tuckerman, M. E., Hutter, J., Parinello, M. The nature of the hydrated excess proton in water. Nature 1999; 397:601.
  • [5] Falk, M., Whalley, E. Infrared Spectra of Methanol and Deuterated Methanols in Gas, Liquid, and Solid Phases. J Chem Phys 1961; 34:1554.
  • [6] Buck, U., Huiken, F. Infrared Spectroscopy of Size-Selected Water and Methanol Clusters. Chem Rev 2000; 100:3863.
  • [7] Andrzejewska A., Sadlej, J. Ab initio study on mixed methanol–hydrogen chloride dimer and trimers. Chem Phys Lett 2004; 393:228.
  • [8] Fujii, A., Enomoto, S., Miyazaki, M., Mikami, N. Morphology of Protonated Methanol Clusters: An Infrared Spectroscopic Study of Hydrogen Bond Networks of H+(CH3OH) (n = 4−15). J Phys Chem A 2005; 109:138.
  • [9] Chang, . H.-C., Jiang, J.-C., Lin, S. H., Lee, Y. T., Chang, H.-C. Isomeric Transitions between Linear and Cyclic H+(CHOH)4-5:  Implications for Proton Migration in Liquid Methanol. J Phys Chem A 1999; 103:2941.
  • [10] Morrone, J. A., Tuckerman, M. E. Ab initio molecular dynamics study of proton mobility in liquid methanol. J Chem Phys 2002; 117:4403.
  • [11] Uras-Aytemiz, N., Sadlej, J., Devlin, J. P., Buch, V. HCl solvation in methanol clusters and nanoparticles: Evidence for proton-wires. Chem Phys Letters 2006; 422:179-183.
  • [12] Wu, C.-C., Jiang, J. C., Boo, D. W., Lin, S. H., Lee, Y. T., Chang, H.-C. Behaviors of an excess proton in solute-containing water clusters: A case study of H+(CH3OH)(H2O)1-6. J Chem Phys 2000; 112: 176.
  • [13] Chaudhuri, C., Jiang, J. C., Wang, X., Lee, Y. T., Chang, H.-C. Identification of CH3OH2+ and H3O+-centered cluster isomers from fragment-dependent vibrational predissociation spectra of H+(CH3OH)4H2O. J Chem Phys 2000; 112:7279.
  • [14] Jiang, J. C., Chaudhuri, C., Lee, Y. T., Chang, H.-C. Hydrogen Bond Rearrangements and Interconversions of H+(CH3OH)4H2O Cluster Isomers. J Phys Chem A 2002; 106:10937.
  • [15] Wu, C.-C., Chaudhuri, C., Jiang, J. C., Lee, Y. T., Chang, H.-C. Structural Isomerism and Competitive Proton Solvation between Methanol and Water in H+(CH3OH)m(H2O)n, m + n = 4. J Phys Chem A 2004; 108:2859.
  • [16] Li, R.-J., Li, Z.-R., Wu, D., Chen, W., Li, Y., Wang, B.-Q., Sun, C.-C. Proton transfer of NH3-HCl catalyzed by only one molecule. J Phys Chem A 2005; 109: 629.
  • [17] Kulczycka, K., Kalbarczyk, P., Aytemiz, N., Sadlej, J., Interaction in the Ternary Complexes of HCl–Methanol–X, X = H2O or NH3: Ab Initio Calculations and On-The-Fly Molecular Dynamics. J Phys Chem A 2008; 112:3870-3878.
  • [18] https://www.cp2k.org.
  • [19] Krack, M., Mohammed, F, Parinello, M., VandeVondele, J., Chassaing, T., Hutter, J. QUICKSTEP: Fast and accurate density functional calculations using a mixed Gaussian and plane waves approach. Comp Phys Comm 2005; 167:103.
  • [20] Frisch, M. J. et al.; Gaussian 09 Revision E. 01, Gaussian, Inc, Wallingford CT, 2016.
  • [21] Mo, O., Yanez, M., Elguero, J. Study of the methanol trimer potential energy surface J Chem Phys 1997; 107:3592.
  • [22] Buch, V., Mohamed, F., Parrinello, M., Devlin, J. P. Elusive structure of HCl monohydrate J Chem Phys 2007; 126:074503.
  • [23] Zundel, G. Hydrogen bonds with large proton polarizability and proton transfer processes in electrochemistry and biology. Adv Chem Phys 2000; 111:1.
Toplam 23 adet kaynakça vardır.

Ayrıntılar

Bölüm Araştırma Makalesi
Yazarlar

Fatime Mine Balcı

Yayımlanma Tarihi 30 Nisan 2018
Yayımlandığı Sayı Yıl 2018 Cilt: 6 Sayı: 1

Kaynak Göster

APA Balcı, F. M. (2018). (HCl)2(CH3OH)2(X)k (X= NH3 veya H2O) Kümelerinde Proton Dinamiğinin Teorik Olarak İncelenmesi. Anadolu Üniversitesi Bilim Ve Teknoloji Dergisi - B Teorik Bilimler, 6(1), 8-21. https://doi.org/10.20290/aubtdb.319402
AMA Balcı FM. (HCl)2(CH3OH)2(X)k (X= NH3 veya H2O) Kümelerinde Proton Dinamiğinin Teorik Olarak İncelenmesi. AUBTD-B. Nisan 2018;6(1):8-21. doi:10.20290/aubtdb.319402
Chicago Balcı, Fatime Mine. “(HCl)2(CH3OH)2(X)k (X= NH3 Veya H2O) Kümelerinde Proton Dinamiğinin Teorik Olarak İncelenmesi”. Anadolu Üniversitesi Bilim Ve Teknoloji Dergisi - B Teorik Bilimler 6, sy. 1 (Nisan 2018): 8-21. https://doi.org/10.20290/aubtdb.319402.
EndNote Balcı FM (01 Nisan 2018) (HCl)2(CH3OH)2(X)k (X= NH3 veya H2O) Kümelerinde Proton Dinamiğinin Teorik Olarak İncelenmesi. Anadolu Üniversitesi Bilim Ve Teknoloji Dergisi - B Teorik Bilimler 6 1 8–21.
IEEE F. M. Balcı, “(HCl)2(CH3OH)2(X)k (X= NH3 veya H2O) Kümelerinde Proton Dinamiğinin Teorik Olarak İncelenmesi”, AUBTD-B, c. 6, sy. 1, ss. 8–21, 2018, doi: 10.20290/aubtdb.319402.
ISNAD Balcı, Fatime Mine. “(HCl)2(CH3OH)2(X)k (X= NH3 Veya H2O) Kümelerinde Proton Dinamiğinin Teorik Olarak İncelenmesi”. Anadolu Üniversitesi Bilim Ve Teknoloji Dergisi - B Teorik Bilimler 6/1 (Nisan 2018), 8-21. https://doi.org/10.20290/aubtdb.319402.
JAMA Balcı FM. (HCl)2(CH3OH)2(X)k (X= NH3 veya H2O) Kümelerinde Proton Dinamiğinin Teorik Olarak İncelenmesi. AUBTD-B. 2018;6:8–21.
MLA Balcı, Fatime Mine. “(HCl)2(CH3OH)2(X)k (X= NH3 Veya H2O) Kümelerinde Proton Dinamiğinin Teorik Olarak İncelenmesi”. Anadolu Üniversitesi Bilim Ve Teknoloji Dergisi - B Teorik Bilimler, c. 6, sy. 1, 2018, ss. 8-21, doi:10.20290/aubtdb.319402.
Vancouver Balcı FM. (HCl)2(CH3OH)2(X)k (X= NH3 veya H2O) Kümelerinde Proton Dinamiğinin Teorik Olarak İncelenmesi. AUBTD-B. 2018;6(1):8-21.