Research Article
BibTex RIS Cite

ANTIOXIDATIVE RESPONSES IN Tubifex tubifex AGAINST THALLIUM INDUCED OXIDATIVE STRESS

Year 2017, Volume: 6 Issue: 2, 75 - 85, 31.08.2017
https://doi.org/10.18036/aubtdc.288885

Abstract











Thallium (Tl) impact on
living systems has become an important issue in recent years. However very few
data exist about the consequences of Tl exposure in freshwater aquatic systems.
The aim of the present study is to investigate alterations in the levels of antioxidative
biomarkers (metallothionein (MT), total glutathione (GSH), glutathione
peroxidase (GPx), glutathione S-transferase (GST) and catalase (CAT)) in the aquatic oligochaete Tubifex tubifex, in response to sublethal doses of Tl.  
Experimental groups were
exposed to thallium acetate at 0.25, 0.5 and 1 µg l-1 concentrations
during 7 or 15 days.
MT
levels were observed to be interestingly decreased.
0.25 µg
l-1 concentration had no effect on total GSH, GPx and GST activities
while 0.5 and 1 µg l-1 concentrations induced total GSH and GPx
activitiy after 7 days. Longer exposure time resulted in a decrease in total
GSH along with GPx and GST activities at all concentrations of Tl. Despite the
significant elevation of CAT activity in all experimental groups, lipid
peroxidation (LP) was observed to be induced depending on the increasing
exposure concentration and time. The results suggested the possible mechanism
of action in the antioxidant system of T.
tubifex
in response to Tl induced oxidative stress (OS) and provide useful
information for the future evaluation of Tl impact on aquatic ecosystems.

References

  • [1] Hanzel CE, Villaverde MS, Verstraeten SV. Glutathione metabolism is impared in vitro by thallium (III) hydroxide. Toxicology. 2005; 207: 501-510.
  • [2] Villaverde MS, Hanzel CE, Verstraeten SV. In vitro interactions of thallium with components of the glutathione-dependent antioxidant defence system. Free Radical Res.2004; 38(9): 977-984.
  • [3] Kemper FR, Bertram HP. Thallium. In: Metals and their compounds in the environment - Occurrence, analysis, and biological relevance, VCH, New York. 1991
  • [4] Peter AL, Viraraghavan T. Thallium: a riview of public health and environmental concerns. Environ. Int. 2005; 31: 493-501.
  • [5] Smutna M, Hilscherova K, Paskova V, Marsalek B. Biochemical parameters in Tubifex tubifex as an integral part of complex sediment toxicity assessment. J.Soils Sediments. 2008; 8: 154-164.
  • [6] Lucan-Bouche ML, Habets F, Biagianthi-Risbourg S, Vernet G. Toxic effects and bioaccumulation of cadmium in the aquatic oligochaete Tubifex tubifex. Ecotoxicol. Environ. Saf. 2000; 46: 246-251.
  • [7] Rathore RS, Khangarot BS. Effects of temprature on the sensitivity of sludge worm Tubifex tubifex Müller to selected heavy metals. Ecotoxicol. Environ.Saf. 2002; 53: 27-36.
  • [8] Mosleh YY, Paris-Palacios S, Couderchet M, Biagianti-Risbourg S, Vernet G. Effects of herbicide isoproturon on metallothioneins, growth and antioxidative defenses in the aquatic worm Tubifex tubifex (Oligochaeta, Tubificidae). Ecotoxicology. 2005; 14(5): 559-571.
  • [9] Galvan-Arzate GS, Chaverri JP, Campos ONM, Maldonado PD, Roman BV, Rios C, Santamaria A. Delayed effects of thallium in the rat brain: regional changes in lipid peroxidation and behavioral markers but moderate alterations in antioxidants, after a single administration. Food Chem. Toxicol. 2005; 43: 1037-1045.
  • [10] Saint-Denis M, Fabrot F, Narbonne JF, Ribera D. Glutathione, glutathione related enzymes, and catalase activities in the earthworm Eisenia fetida andrei. Arch. Environ. Contam. Toxicol. 1998; 35: 602–614.
  • [11] Galvan-Arzate SG, Martinez A, Medina E, Santamaria A, Rios C. Subchronic administration of sublethal doses of thallium to rats: effects on distribution and lipid peroxidation in brain regions. Toxicol. Lett. 2000; 116: 37–43.
  • [12] Viarengo A, Ponzano E, Dondero F, Fabbri R. A simple spectrophotometric method for metallothionein evaluation in marine organisms: an application to Mediterranean and Antarctic molluscs. Mar. Environ. Res. 1997; 44 (1): 69–84.
  • [13] Lukkari T, Taavitsainen M, Soimasuo M, Oikari A, Haimi J. Biomarker responses of the earthworm Aporrectodea tuberculata to copper and zinc exposure: differences between populations with and without earlier metal exposure. Environ. Pollut. 2004; 129 (3): 377–386.
  • [14] Bradford MMA. Rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein dye-binding. Anal. Biochem. 1976; 72: 248–254.
  • [15] Lawrence RA, Burk RF. Glutathione peroxidase activity in selenium deficient rat liver. Biochem. Biophys. Res. Commun. 1976; 71 (4): 952–958.
  • [16] Habig WH, Pabst MJ, Jakoby WB. Glutathione S-transferase: The first enzymatic step in mercapturic acid formation. J. Biol. Chem. 1974; 249: 7130–7139.
  • [17] Beers RF, Sizer IW. Spectrophotometric method for measuring the breakdown of hydrogen peroxide by catalase. J. Biol. Chem. 1952; 195: 133–140.
  • [18] Ohkawa H, Ohishi N, Yagi K. Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal. Biochem. 1979; 95: 351–358.
  • [19] Dumas J, Hare L. The internal distribution of nickel and thallium in two freshwater invertebrates and its relevance to trophic transfer. Environ. Sci. Technol. 2008; 42: 5144-5149.
  • [20] Kılıç V, Altunsoy F, Aydoğan Kılıç G. Effect of thallium on the survival and morphology of Tubifex tubifex (Oligochaeta,Tubificidae). Fresenius Environ. Bull. 2011; 20: 2442-2445.
  • [21] Maity S, Roy S, Bhattacharya S, Chaudhury S. Metallothionein responses in the earthworm Lampito mauritii (Kinberg) following lead and zinc exposure: A promising tool for monitoring metal contamination. Eur. J. Soil Biol. 2011; 47: 69-71.
  • [22] Mosleh YY, Paris-Palacios S, Biagianti-Risbourg S. Metallothioneins induction and antioxidative response in aquatic worms Tubifex tubifex (Oligochaeta, Tubificidae) exposed to copper. Chemosphere. 2006; 64: 121–128.
  • [23] Fan WH, Tang G, Zhao CM, Duan Y, Zhang R. Metal accumulation and biomarker responses in Daphnia magna following cadmium and zinc exposure. Environ. Toxicol. Chem. 2009; 28: 305-310.
  • [24] Won EJ, Raisuddin S, Shin KH. Evaluation of induction of metallothioneinlike proteins (MTLPs) in the polychaetes for biomonitoring of heavy metal pollution in marine sediment. Mar. Pollut. Bull. 2008; 57: 544–551.
  • [25] Zierold K. Heavy metal toxicity studied by electron probe X-ray microanalysis of cultured rat hepatocytes. Toxicol. in Vitro. 2000; 14: 557–563.
  • [26] Aydoğan Kılıç G, Kutlu M. Effects of exogenous metallothionein against thallium-induced oxidative stres in rat liver. Food Chem. Toxicol. 2010; 48:3: 980-987.
  • [27] Haidara K, Moffatt P, Denizaeu F. Metallothionein induction attenuates the effects of glutathione depletors in rat hepatocytes. Toxicol. Sci. 1999; 49: 297–305.
  • [28] Mosleh YY, Paris-Palacios S, Ahmed MT, Mahmoud FM, Osman MA, Biagianti-Risbourg S. Effects of chitosan on oxidative stress and metallothioneins in aquatic worm Tubifex tubifex (Oligochaeta,Tubificidae). Chemosphere. 2007; 67(1):167-75.
  • [29] Ercal N, Gurer-Orhan H, Aykin-Burns N. Toxic metals and oxidative stress part I: mechanisms involved in metal induced oxidative damage. Curr Top Med Chem. 2001; 1: 529–539.
  • [30] Hidalgo J, Garvey JS, Armario A. On the metallothionein, glutathione and cysteine relationship in rat liver. J. Pharmac. exp. Ther. 1990; 255: 554-564.
  • [31] Kim BM, Rhee JS, Jeong CB, Seo JS, Park GS, Lee YM, Lee JS. Heavy metals induce oxidative stress and trigger oxidative stress-mediated heat shock protein (hsp) modulation in the intertidal copepod Tigriopus japonicus. Comp. Biochem. Physiol. C Toxicol. Pharmacol. 2014; 166: 65-74.
  • [32] Misra RB, Babu S, Ray RS, Hans RK. Tubifex: A Sensitive Model for UV-B-Induced Phototoxicity. Ecotoxicol. Environ. Saf. 2002; 52: 288–295.

Tubifex tubifex'DE TALYUM İLE İNDÜKLENEN OKSİDATİF STRESE KARŞI OLUŞAN ANTİOKSİDAN YANITLAR

Year 2017, Volume: 6 Issue: 2, 75 - 85, 31.08.2017
https://doi.org/10.18036/aubtdc.288885

Abstract

Talyum (Tl)’un canlı sistemler üzerindeki etkisi
son yıllarda önemli bir sorun haline gelmiştir. Bununla birlikte, sucul
sistemlerin Tl’a maruz kalmasının sonuçları ile ilgili çok az bilgi mevcuttur. Bu
çalışmanın amacı, sucul oligoket Tubifex
tubifex
’in antioksidan biyolojik belirteçlerinde (
metallotionein (MT), toplam glutatyon (GSH), glutatyon
peroksidaz (GPx), glutatyon S-transferaz (GST) ve katalaz (CAT)),
TI’un
subletal dozlarına yanıt olarak meydana gelen değişikliklerin araştırılmasıdır.
Deney grupları 0.25, 0.5 ve 1 µg l-1’lik konsantrasyonlarda, 7 ve 15
günlük süreler boyunca talyum asetat’a maruz bırakılmıştır. MT seviyelerinde
ilgi çekici bir azalma gözlenmiştir. 0.25 µg l-1’ lık konsantrasyon
toplam GSH, GPx ve GST aktiviteleri üzerinde etki göstermezken, 0.5 ve 1 µg l-1’
lık konsantrasyonlar toplam GSH ve GPx aktivitelerini 7 günün sonunda
indüklemiştir. Daha uzun maruz kalma süresi GPx ve GST aktiviteleri ile
birlikte toplam GSH’un da tüm konsantrasyonlarda azalmasına neden olmuştur. CAT
aktivitesinde tüm deney gruplarında gözlenen anlamlı artışa rağmen, lipid
peroksidasyonunun (LP) artan konsantrasyon ve süreye bağlı olarak arttığı
gözlenmiştir. Sonuçlar Tl ile indüklenen oksidatif strese karşı, T. tubifex’in antioksidan sisteminin olası
hareket mekanizmasını ortaya koymakta ve Tl’un sucul ekosistemlerdeki etkileri
ile ilgili gelecekte yapılacak değerlendirmeler için önemli bir bilgi kaynağı oluşturmaktadır.

References

  • [1] Hanzel CE, Villaverde MS, Verstraeten SV. Glutathione metabolism is impared in vitro by thallium (III) hydroxide. Toxicology. 2005; 207: 501-510.
  • [2] Villaverde MS, Hanzel CE, Verstraeten SV. In vitro interactions of thallium with components of the glutathione-dependent antioxidant defence system. Free Radical Res.2004; 38(9): 977-984.
  • [3] Kemper FR, Bertram HP. Thallium. In: Metals and their compounds in the environment - Occurrence, analysis, and biological relevance, VCH, New York. 1991
  • [4] Peter AL, Viraraghavan T. Thallium: a riview of public health and environmental concerns. Environ. Int. 2005; 31: 493-501.
  • [5] Smutna M, Hilscherova K, Paskova V, Marsalek B. Biochemical parameters in Tubifex tubifex as an integral part of complex sediment toxicity assessment. J.Soils Sediments. 2008; 8: 154-164.
  • [6] Lucan-Bouche ML, Habets F, Biagianthi-Risbourg S, Vernet G. Toxic effects and bioaccumulation of cadmium in the aquatic oligochaete Tubifex tubifex. Ecotoxicol. Environ. Saf. 2000; 46: 246-251.
  • [7] Rathore RS, Khangarot BS. Effects of temprature on the sensitivity of sludge worm Tubifex tubifex Müller to selected heavy metals. Ecotoxicol. Environ.Saf. 2002; 53: 27-36.
  • [8] Mosleh YY, Paris-Palacios S, Couderchet M, Biagianti-Risbourg S, Vernet G. Effects of herbicide isoproturon on metallothioneins, growth and antioxidative defenses in the aquatic worm Tubifex tubifex (Oligochaeta, Tubificidae). Ecotoxicology. 2005; 14(5): 559-571.
  • [9] Galvan-Arzate GS, Chaverri JP, Campos ONM, Maldonado PD, Roman BV, Rios C, Santamaria A. Delayed effects of thallium in the rat brain: regional changes in lipid peroxidation and behavioral markers but moderate alterations in antioxidants, after a single administration. Food Chem. Toxicol. 2005; 43: 1037-1045.
  • [10] Saint-Denis M, Fabrot F, Narbonne JF, Ribera D. Glutathione, glutathione related enzymes, and catalase activities in the earthworm Eisenia fetida andrei. Arch. Environ. Contam. Toxicol. 1998; 35: 602–614.
  • [11] Galvan-Arzate SG, Martinez A, Medina E, Santamaria A, Rios C. Subchronic administration of sublethal doses of thallium to rats: effects on distribution and lipid peroxidation in brain regions. Toxicol. Lett. 2000; 116: 37–43.
  • [12] Viarengo A, Ponzano E, Dondero F, Fabbri R. A simple spectrophotometric method for metallothionein evaluation in marine organisms: an application to Mediterranean and Antarctic molluscs. Mar. Environ. Res. 1997; 44 (1): 69–84.
  • [13] Lukkari T, Taavitsainen M, Soimasuo M, Oikari A, Haimi J. Biomarker responses of the earthworm Aporrectodea tuberculata to copper and zinc exposure: differences between populations with and without earlier metal exposure. Environ. Pollut. 2004; 129 (3): 377–386.
  • [14] Bradford MMA. Rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein dye-binding. Anal. Biochem. 1976; 72: 248–254.
  • [15] Lawrence RA, Burk RF. Glutathione peroxidase activity in selenium deficient rat liver. Biochem. Biophys. Res. Commun. 1976; 71 (4): 952–958.
  • [16] Habig WH, Pabst MJ, Jakoby WB. Glutathione S-transferase: The first enzymatic step in mercapturic acid formation. J. Biol. Chem. 1974; 249: 7130–7139.
  • [17] Beers RF, Sizer IW. Spectrophotometric method for measuring the breakdown of hydrogen peroxide by catalase. J. Biol. Chem. 1952; 195: 133–140.
  • [18] Ohkawa H, Ohishi N, Yagi K. Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal. Biochem. 1979; 95: 351–358.
  • [19] Dumas J, Hare L. The internal distribution of nickel and thallium in two freshwater invertebrates and its relevance to trophic transfer. Environ. Sci. Technol. 2008; 42: 5144-5149.
  • [20] Kılıç V, Altunsoy F, Aydoğan Kılıç G. Effect of thallium on the survival and morphology of Tubifex tubifex (Oligochaeta,Tubificidae). Fresenius Environ. Bull. 2011; 20: 2442-2445.
  • [21] Maity S, Roy S, Bhattacharya S, Chaudhury S. Metallothionein responses in the earthworm Lampito mauritii (Kinberg) following lead and zinc exposure: A promising tool for monitoring metal contamination. Eur. J. Soil Biol. 2011; 47: 69-71.
  • [22] Mosleh YY, Paris-Palacios S, Biagianti-Risbourg S. Metallothioneins induction and antioxidative response in aquatic worms Tubifex tubifex (Oligochaeta, Tubificidae) exposed to copper. Chemosphere. 2006; 64: 121–128.
  • [23] Fan WH, Tang G, Zhao CM, Duan Y, Zhang R. Metal accumulation and biomarker responses in Daphnia magna following cadmium and zinc exposure. Environ. Toxicol. Chem. 2009; 28: 305-310.
  • [24] Won EJ, Raisuddin S, Shin KH. Evaluation of induction of metallothioneinlike proteins (MTLPs) in the polychaetes for biomonitoring of heavy metal pollution in marine sediment. Mar. Pollut. Bull. 2008; 57: 544–551.
  • [25] Zierold K. Heavy metal toxicity studied by electron probe X-ray microanalysis of cultured rat hepatocytes. Toxicol. in Vitro. 2000; 14: 557–563.
  • [26] Aydoğan Kılıç G, Kutlu M. Effects of exogenous metallothionein against thallium-induced oxidative stres in rat liver. Food Chem. Toxicol. 2010; 48:3: 980-987.
  • [27] Haidara K, Moffatt P, Denizaeu F. Metallothionein induction attenuates the effects of glutathione depletors in rat hepatocytes. Toxicol. Sci. 1999; 49: 297–305.
  • [28] Mosleh YY, Paris-Palacios S, Ahmed MT, Mahmoud FM, Osman MA, Biagianti-Risbourg S. Effects of chitosan on oxidative stress and metallothioneins in aquatic worm Tubifex tubifex (Oligochaeta,Tubificidae). Chemosphere. 2007; 67(1):167-75.
  • [29] Ercal N, Gurer-Orhan H, Aykin-Burns N. Toxic metals and oxidative stress part I: mechanisms involved in metal induced oxidative damage. Curr Top Med Chem. 2001; 1: 529–539.
  • [30] Hidalgo J, Garvey JS, Armario A. On the metallothionein, glutathione and cysteine relationship in rat liver. J. Pharmac. exp. Ther. 1990; 255: 554-564.
  • [31] Kim BM, Rhee JS, Jeong CB, Seo JS, Park GS, Lee YM, Lee JS. Heavy metals induce oxidative stress and trigger oxidative stress-mediated heat shock protein (hsp) modulation in the intertidal copepod Tigriopus japonicus. Comp. Biochem. Physiol. C Toxicol. Pharmacol. 2014; 166: 65-74.
  • [32] Misra RB, Babu S, Ray RS, Hans RK. Tubifex: A Sensitive Model for UV-B-Induced Phototoxicity. Ecotoxicol. Environ. Saf. 2002; 52: 288–295.
There are 32 citations in total.

Details

Journal Section Articles
Authors

Gözde Aydoğan Kılıç

VOLKAN Kılıç

Publication Date August 31, 2017
Published in Issue Year 2017 Volume: 6 Issue: 2

Cite

APA Aydoğan Kılıç, G., & Kılıç, V. (2017). ANTIOXIDATIVE RESPONSES IN Tubifex tubifex AGAINST THALLIUM INDUCED OXIDATIVE STRESS. Anadolu University Journal of Science and Technology C - Life Sciences and Biotechnology, 6(2), 75-85. https://doi.org/10.18036/aubtdc.288885
AMA Aydoğan Kılıç G, Kılıç V. ANTIOXIDATIVE RESPONSES IN Tubifex tubifex AGAINST THALLIUM INDUCED OXIDATIVE STRESS. Anadolu University Journal of Science and Technology C - Life Sciences and Biotechnology. August 2017;6(2):75-85. doi:10.18036/aubtdc.288885
Chicago Aydoğan Kılıç, Gözde, and VOLKAN Kılıç. “ANTIOXIDATIVE RESPONSES IN Tubifex Tubifex AGAINST THALLIUM INDUCED OXIDATIVE STRESS”. Anadolu University Journal of Science and Technology C - Life Sciences and Biotechnology 6, no. 2 (August 2017): 75-85. https://doi.org/10.18036/aubtdc.288885.
EndNote Aydoğan Kılıç G, Kılıç V (August 1, 2017) ANTIOXIDATIVE RESPONSES IN Tubifex tubifex AGAINST THALLIUM INDUCED OXIDATIVE STRESS. Anadolu University Journal of Science and Technology C - Life Sciences and Biotechnology 6 2 75–85.
IEEE G. Aydoğan Kılıç and V. Kılıç, “ANTIOXIDATIVE RESPONSES IN Tubifex tubifex AGAINST THALLIUM INDUCED OXIDATIVE STRESS”, Anadolu University Journal of Science and Technology C - Life Sciences and Biotechnology, vol. 6, no. 2, pp. 75–85, 2017, doi: 10.18036/aubtdc.288885.
ISNAD Aydoğan Kılıç, Gözde - Kılıç, VOLKAN. “ANTIOXIDATIVE RESPONSES IN Tubifex Tubifex AGAINST THALLIUM INDUCED OXIDATIVE STRESS”. Anadolu University Journal of Science and Technology C - Life Sciences and Biotechnology 6/2 (August 2017), 75-85. https://doi.org/10.18036/aubtdc.288885.
JAMA Aydoğan Kılıç G, Kılıç V. ANTIOXIDATIVE RESPONSES IN Tubifex tubifex AGAINST THALLIUM INDUCED OXIDATIVE STRESS. Anadolu University Journal of Science and Technology C - Life Sciences and Biotechnology. 2017;6:75–85.
MLA Aydoğan Kılıç, Gözde and VOLKAN Kılıç. “ANTIOXIDATIVE RESPONSES IN Tubifex Tubifex AGAINST THALLIUM INDUCED OXIDATIVE STRESS”. Anadolu University Journal of Science and Technology C - Life Sciences and Biotechnology, vol. 6, no. 2, 2017, pp. 75-85, doi:10.18036/aubtdc.288885.
Vancouver Aydoğan Kılıç G, Kılıç V. ANTIOXIDATIVE RESPONSES IN Tubifex tubifex AGAINST THALLIUM INDUCED OXIDATIVE STRESS. Anadolu University Journal of Science and Technology C - Life Sciences and Biotechnology. 2017;6(2):75-8.