Research Article
BibTex RIS Cite

Hunga Tonga - Hunga Ha'apai Volkan Patlamalarının Atmosfer Basıncına Etkisi

Year 2023, Volume: 21 Issue: 1, 36 - 48, 30.04.2023
https://doi.org/10.33688/aucbd.1212115

Abstract

Bu çalışmanın amacı, Hunga Tonga - Hunga Ha'apai yanardağının 15 Ocak 2022'de 04:14 UTC'de volkanik patlamasının neden olduğu atmosfer basıncındaki dalgalanmayı incelemektir. Patlamanın yarattığı dalganın ses hızında sabit hareket edeceği tahmin edilmiş ve Türkiye'ye 13 saat 22 dakikada varacağı hesaplanmıştır. Bu duruma göre 15 Ocak 2022 17:36 UTC itibariyle ilk şok dalgasının Türkiye'ye gelebileceği hesaplanmıştır. İkinci aşamada, Türkiye'deki 12 Meteoroloji İstasyonunun (Otomatik Hava Gözlem Sistemi, AWOS) 1 dakikalık basınç verileri analiz edilmiştir. Yapılan analiz ve değerlendirmelerde, ilk olarak en doğudaki istasyon olan Van Meteoroloji İstasyonu'nun 15 Ocak 2022, 18:38'deki basıncında keskin bir yukarı yönlü hareket gözlemlendi. Şok dalgasının bu istasyona ortalama 303.2 m/s hızla 15.1 saatte geldiği hesaplanmıştır.

References

  • Amores, A., Monserrat, S., Marcos, M., Argüeso, D., Villalonga, J., Jordà, G., Gomis, D. (2022). Numerical simulation of atmospheric lamb waves generated by the 2022 Hunga‐Tonga volcanic eruption. Geophysical Research Letters, 49 (6), 1-8. doi:10.1029/2022GL098240
  • Bretherton, F. P. (1969). Lamb waves in a nearly isothermal atmosphere. Quarterly Journal of the Royal Meteorological Society, 95 (406), 754–757. doi:10.1002/qj.49709540608
  • Burt, S. (2022). Multiple airwaves crossing Britain and Ireland following the eruption of Hunga Tonga–Hunga Ha’apai on 15 January 2022. Weather, 77 (3), 76–81. doi:10.1002/wea.4182
  • Cole‐Dai, J. (2010). Volcanoes and climate. WIREs Climate Change, 1 (6), 824–839. doi:10.1002/wcc.76
  • Dawson, A. G., Kirkbride, M. P., Cole, H. (2021). Atmospheric effects in Scotland of the AD 1783–84 Laki eruption in Iceland. The Holocene, 31 (5), 830–843. doi:10.1177/0959683620988052
  • De Angelis, S., Haney, M. M., Lyons, J. J., Wech, A., Fee, D., Diaz-Moreno, A., Zuccarello, L. (2020). Uncertainty in detection of volcanic activity using infrasound arrays: Examples from Mt. Etna, Italy. Frontiers in Earth Science, 8, 169. doi:10.3389/feart.2020.00169
  • Di Martino, R. M. R., Camarda, M., Gurrieri, S. (2021). Continuous monitoring of hydrogen and carbon dioxide at Stromboli volcano (Aeolian Islands, Italy). Italian Journal of Geosciences, 140 (1), 79–94. doi:10.3301/IJG.2020.26
  • Explosive eruption of the Hunga Tonga volcano—CIMSS Satellite Blog, CIMSS. (n.d.). Retrieved 14 November 2022, from https://cimss.ssec.wisc.edu/satellite-blog/archives/44252
  • Gossard, E. E., Hooke, W. H. (1975). Waves in the Atmosphere: Atmospheric Infrasound and Gravity Waves: Their Generation and Propagation. Elsevier Scientific Pub. Co.
  • Hindley, N., Hoffmann, L., Alexander, M. J., Mitchell, C., Osprey, S., Randall, C., Wright, C., Yue, J. (2022). The global reach of gravity waves at the stratospheric speed limit from the 2022 Hunga Tonga volcanic eruption EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022. doi:10.5194/egusphere-egu22-10645
  • Hunga Tonga-Hunga Ha’apai major eruptions EUMETSAT. (n.d.). Retrieved 14 November 2022, from https://www.eumetsat.int/hunga-tonga-hunga-haapai_2022
  • Imamura, F., Suppasri, A., Arikawa, T., Koshimura, S., Satake, K., Tanioka, Y. (2022). Preliminary Observations and Impact in Japan of the Tsunami Caused by the Tonga Volcanic Eruption on January 15, 2022. Pure and Applied Geophysics, 179 (5), 1549–1560. doi:10.1007/s00024-022-03058-0
  • Kubota, T., Saito, T., Nishida, K. (2022). Global fast-traveling tsunamis driven by atmospheric Lamb waves on the 2022 Tonga eruption. Science, 377 (6601), 91–94. doi:10.1126/science.abo4364
  • Le Pichon, A. (2005). Infrasound monitoring of volcanoes to probe high-altitude winds. Journal of Geophysical Research, 110 (D13), D13106. doi:10.1029/2004JD005587
  • M 5.8 Volcanic Eruption—68 km NNW of Nuku‘alofa, Tonga. (n.d.). Retrieved 14 November 2022, from https://earthquake.usgs.gov/earthquakes/eventpage/us7000gc8r/origin/detail
  • Marchetti, E., Ripepe, M., Campus, P., Le Pichon, A., Vergoz, J., Lacanna, G., Mialle, P., Héreil, P., Husson, P. (2019). Long range infrasound monitoring of Etna volcano. Scientific Reports, 9 (1), 18015. doi:10.1038/s41598-019-54468-5
  • Matoza, R., Fee, D., Green, D., Mialle, P. (2019). Volcano Infrasound and the International Monitoring System. In A. Le Pichon, E. Blanc, & A. Hauchecorne (Eds.), Infrasound Monitoring for Atmospheric Studies (pp. 1023–1077). Springer International Publishing. doi:10.1007/978-3-319-75140-5_33
  • Sepic, J., Medvedev, I., Fine, I., Thomson, R., Rabinovich, A. (2022). The global reach of the 2022 Tonga volcanic eruption [Other]. display. doi:10.5194/egusphere-egu22-13588
  • The January 15, 2022 Hunga Tonga-Hunga Ha’apai Eruption and Tsunami, Tonga. [Global Rapid Post Disaster Damage Estimation (Grade) Report]. World Bank.
  • Wright, C., Hindley, N., Alexander, M. J., Barlow, M., Hoffmann, L., Mitchell, C., Prata, F., Bouillon, M., Carstens, J., Clerbaux, C., Osprey, S., Powell, N., Randall, C., Yue, J. (2022). Tonga eruption triggered waves propagating globally from surface to edge of space [Preprint]. Atmospheric Sciences. doi:10.1002/essoar.10510674.1

Effect of Hunga Tonga - Hunga Ha’apai Volcanic Eruptions on Atmospheric Pressure

Year 2023, Volume: 21 Issue: 1, 36 - 48, 30.04.2023
https://doi.org/10.33688/aucbd.1212115

Abstract

The aim of this study is to examine the fluctuation in atmospheric pressure caused by the volcanic eruption of Hunga Tonga - Hunga Ha’apai volcano on January 15, 2022, at 04:14 UTC. In the study, it was predicted that the wave created by the explosion would move at a constant speed of sound and it was calculated that it would arrive in Türkiye in 13 hours and 22 minutes. According to this situation, it was calculated that the first lamb wave could come to Türkiye as of 15 January 2022 17:36 UTC. In the second stage, 1 minute pressure data of 12 Meteorological Station (Automated Weather Observation System, AWOS) in Türkiye was analyzed. In the analyzes and evaluations made, a sharp upward movement was observed in the pressure measured at 18:38 on January 15, 2022, at the Van Meteorology Station, which is the easternmost station. It was calculated that the lamb wave arrived at this station at an average speed of 303.2 m/s in 15.1 hours.

References

  • Amores, A., Monserrat, S., Marcos, M., Argüeso, D., Villalonga, J., Jordà, G., Gomis, D. (2022). Numerical simulation of atmospheric lamb waves generated by the 2022 Hunga‐Tonga volcanic eruption. Geophysical Research Letters, 49 (6), 1-8. doi:10.1029/2022GL098240
  • Bretherton, F. P. (1969). Lamb waves in a nearly isothermal atmosphere. Quarterly Journal of the Royal Meteorological Society, 95 (406), 754–757. doi:10.1002/qj.49709540608
  • Burt, S. (2022). Multiple airwaves crossing Britain and Ireland following the eruption of Hunga Tonga–Hunga Ha’apai on 15 January 2022. Weather, 77 (3), 76–81. doi:10.1002/wea.4182
  • Cole‐Dai, J. (2010). Volcanoes and climate. WIREs Climate Change, 1 (6), 824–839. doi:10.1002/wcc.76
  • Dawson, A. G., Kirkbride, M. P., Cole, H. (2021). Atmospheric effects in Scotland of the AD 1783–84 Laki eruption in Iceland. The Holocene, 31 (5), 830–843. doi:10.1177/0959683620988052
  • De Angelis, S., Haney, M. M., Lyons, J. J., Wech, A., Fee, D., Diaz-Moreno, A., Zuccarello, L. (2020). Uncertainty in detection of volcanic activity using infrasound arrays: Examples from Mt. Etna, Italy. Frontiers in Earth Science, 8, 169. doi:10.3389/feart.2020.00169
  • Di Martino, R. M. R., Camarda, M., Gurrieri, S. (2021). Continuous monitoring of hydrogen and carbon dioxide at Stromboli volcano (Aeolian Islands, Italy). Italian Journal of Geosciences, 140 (1), 79–94. doi:10.3301/IJG.2020.26
  • Explosive eruption of the Hunga Tonga volcano—CIMSS Satellite Blog, CIMSS. (n.d.). Retrieved 14 November 2022, from https://cimss.ssec.wisc.edu/satellite-blog/archives/44252
  • Gossard, E. E., Hooke, W. H. (1975). Waves in the Atmosphere: Atmospheric Infrasound and Gravity Waves: Their Generation and Propagation. Elsevier Scientific Pub. Co.
  • Hindley, N., Hoffmann, L., Alexander, M. J., Mitchell, C., Osprey, S., Randall, C., Wright, C., Yue, J. (2022). The global reach of gravity waves at the stratospheric speed limit from the 2022 Hunga Tonga volcanic eruption EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022. doi:10.5194/egusphere-egu22-10645
  • Hunga Tonga-Hunga Ha’apai major eruptions EUMETSAT. (n.d.). Retrieved 14 November 2022, from https://www.eumetsat.int/hunga-tonga-hunga-haapai_2022
  • Imamura, F., Suppasri, A., Arikawa, T., Koshimura, S., Satake, K., Tanioka, Y. (2022). Preliminary Observations and Impact in Japan of the Tsunami Caused by the Tonga Volcanic Eruption on January 15, 2022. Pure and Applied Geophysics, 179 (5), 1549–1560. doi:10.1007/s00024-022-03058-0
  • Kubota, T., Saito, T., Nishida, K. (2022). Global fast-traveling tsunamis driven by atmospheric Lamb waves on the 2022 Tonga eruption. Science, 377 (6601), 91–94. doi:10.1126/science.abo4364
  • Le Pichon, A. (2005). Infrasound monitoring of volcanoes to probe high-altitude winds. Journal of Geophysical Research, 110 (D13), D13106. doi:10.1029/2004JD005587
  • M 5.8 Volcanic Eruption—68 km NNW of Nuku‘alofa, Tonga. (n.d.). Retrieved 14 November 2022, from https://earthquake.usgs.gov/earthquakes/eventpage/us7000gc8r/origin/detail
  • Marchetti, E., Ripepe, M., Campus, P., Le Pichon, A., Vergoz, J., Lacanna, G., Mialle, P., Héreil, P., Husson, P. (2019). Long range infrasound monitoring of Etna volcano. Scientific Reports, 9 (1), 18015. doi:10.1038/s41598-019-54468-5
  • Matoza, R., Fee, D., Green, D., Mialle, P. (2019). Volcano Infrasound and the International Monitoring System. In A. Le Pichon, E. Blanc, & A. Hauchecorne (Eds.), Infrasound Monitoring for Atmospheric Studies (pp. 1023–1077). Springer International Publishing. doi:10.1007/978-3-319-75140-5_33
  • Sepic, J., Medvedev, I., Fine, I., Thomson, R., Rabinovich, A. (2022). The global reach of the 2022 Tonga volcanic eruption [Other]. display. doi:10.5194/egusphere-egu22-13588
  • The January 15, 2022 Hunga Tonga-Hunga Ha’apai Eruption and Tsunami, Tonga. [Global Rapid Post Disaster Damage Estimation (Grade) Report]. World Bank.
  • Wright, C., Hindley, N., Alexander, M. J., Barlow, M., Hoffmann, L., Mitchell, C., Prata, F., Bouillon, M., Carstens, J., Clerbaux, C., Osprey, S., Powell, N., Randall, C., Yue, J. (2022). Tonga eruption triggered waves propagating globally from surface to edge of space [Preprint]. Atmospheric Sciences. doi:10.1002/essoar.10510674.1
There are 20 citations in total.

Details

Primary Language English
Subjects Human Geography
Journal Section Research Article
Authors

Muhammet Ali Pekin 0000-0002-6807-890X

Barış Özgün 0000-0001-6691-3652

Ayşe Gökçen Işık 0000-0001-8232-6415

Mustafa Sert 0000-0002-6614-2939

Serap Armutlu 0000-0002-1322-9299

Cihan Dündar 0000-0002-0903-603X

Early Pub Date April 30, 2023
Publication Date April 30, 2023
Published in Issue Year 2023 Volume: 21 Issue: 1

Cite

APA Pekin, M. A., Özgün, B., Işık, A. G., Sert, M., et al. (2023). Effect of Hunga Tonga - Hunga Ha’apai Volcanic Eruptions on Atmospheric Pressure. Coğrafi Bilimler Dergisi, 21(1), 36-48. https://doi.org/10.33688/aucbd.1212115