Research Article
BibTex RIS Cite
Year 2021, , 25 - 31, 30.06.2021
https://doi.org/10.33769/aupse.525325

Abstract

References

  • Rakic, G., Milenkovic, D., Vujovic, S., Vujovic, T., Jovic, S., Information system for e-GDP based on computational intelligence approach, Physica A: Statistical Mechanics and its Applications, 513 (2019), 418–423. https://doi.org/ 10.1016/j.physa.2018.09.010
  • Markovic, D., Petkovic, D., Nikolic, V., Milovancevc, M., Petkovic, B., Soft computing prediction of economic growth based in science and technology factors, Physica A: Statistical Mechanics and its Applications, 465 (2017), 217-220. https://doi.org/10.1016/j.physa.2016.08.034
  • Alshehry, A.S., Belloumi, M., Energy consumption, carbon dioxide emis- sions and economic growth: The case of Saudi Arabia, Renewable and Sustainable Energy Reviews, 41 (2015), 237-247. https://doi.org/10.1016/j.rser.2014.08.004
  • Mbarek, M.B., Abdelkafi, I., Feki, R., Nonlinear causality between renewable energy, economic growth, and unemployment: Evidence from Tunisia, Journal of Knowledge Economy, 19 (2018), 694-702. https://doi.org/10.1007/s13132-016-0357-9
  • Huang, G.B., Zhu, Q.Y., Siew, C.K., Extreme learning machine: Theory and applications, Neurocomputing, 70 (2006), 489-501. https://doi.org/10.1016/j.neucom.2005.12.126
  • World Bank Open Data, https://data.worldbank.org
  • Kankal, M., Uzlu, E., Neural network approach with teachinglearning- based optimization for modeling and forecasting long-term electric energy demand in Turkey, Neural Computing Application, 28 (2017), 737-747. https://doi.org/10.1007/s00521-016-2409-2
  • Cogoljevic, D., Alizamir, M., Piljan, I., Piljan, T., Prljicc, K. , Zimonjic, S., A machine learning approach for predicting the relationship between energy resources and economic development, Physica A: Statistical Mechanics and its Applications, 495 (2018), 211-214. https://doi.org/10.1016/j.physa.2017.12.082
  • Milacic, L., Jovic, S., Vuovcc, T., Miljkov, J., Application of artificial neu- ral network with extreme learning machine for economic growth estimation, Physica A: Statistical Mechanics and its Applications, 465 (2017), 285-288. https://doi.org/10.1016/j.physa.2016.08.040

Determining the most relevant input parameter set by using extreme learning machine

Year 2021, , 25 - 31, 30.06.2021
https://doi.org/10.33769/aupse.525325

Abstract

In this work, Extreme Learning Machine (ELM) algorithm is used to estimate the GDP per capita. The amount of electricity production, from four different sources, is chosen as input parameters. To find out the most relevant input data for a reasonable estimation of GDP, different sources introduced separately to ELM. By following the coefficient of determination of estimation, by trial and error, results are obtained. The residuals are also given to show that model perform well. Renewable energy sources produce the best results in the estimation of GDP. 

References

  • Rakic, G., Milenkovic, D., Vujovic, S., Vujovic, T., Jovic, S., Information system for e-GDP based on computational intelligence approach, Physica A: Statistical Mechanics and its Applications, 513 (2019), 418–423. https://doi.org/ 10.1016/j.physa.2018.09.010
  • Markovic, D., Petkovic, D., Nikolic, V., Milovancevc, M., Petkovic, B., Soft computing prediction of economic growth based in science and technology factors, Physica A: Statistical Mechanics and its Applications, 465 (2017), 217-220. https://doi.org/10.1016/j.physa.2016.08.034
  • Alshehry, A.S., Belloumi, M., Energy consumption, carbon dioxide emis- sions and economic growth: The case of Saudi Arabia, Renewable and Sustainable Energy Reviews, 41 (2015), 237-247. https://doi.org/10.1016/j.rser.2014.08.004
  • Mbarek, M.B., Abdelkafi, I., Feki, R., Nonlinear causality between renewable energy, economic growth, and unemployment: Evidence from Tunisia, Journal of Knowledge Economy, 19 (2018), 694-702. https://doi.org/10.1007/s13132-016-0357-9
  • Huang, G.B., Zhu, Q.Y., Siew, C.K., Extreme learning machine: Theory and applications, Neurocomputing, 70 (2006), 489-501. https://doi.org/10.1016/j.neucom.2005.12.126
  • World Bank Open Data, https://data.worldbank.org
  • Kankal, M., Uzlu, E., Neural network approach with teachinglearning- based optimization for modeling and forecasting long-term electric energy demand in Turkey, Neural Computing Application, 28 (2017), 737-747. https://doi.org/10.1007/s00521-016-2409-2
  • Cogoljevic, D., Alizamir, M., Piljan, I., Piljan, T., Prljicc, K. , Zimonjic, S., A machine learning approach for predicting the relationship between energy resources and economic development, Physica A: Statistical Mechanics and its Applications, 495 (2018), 211-214. https://doi.org/10.1016/j.physa.2017.12.082
  • Milacic, L., Jovic, S., Vuovcc, T., Miljkov, J., Application of artificial neu- ral network with extreme learning machine for economic growth estimation, Physica A: Statistical Mechanics and its Applications, 465 (2017), 285-288. https://doi.org/10.1016/j.physa.2016.08.040
There are 9 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Research Articles
Authors

Semra Gündüç 0000-0002-3811-9547

Recep Eryigit This is me 0000-0002-4282-6340

Publication Date June 30, 2021
Submission Date February 11, 2019
Acceptance Date February 3, 2021
Published in Issue Year 2021

Cite

APA Gündüç, S., & Eryigit, R. (2021). Determining the most relevant input parameter set by using extreme learning machine. Communications Faculty of Sciences University of Ankara Series A2-A3 Physical Sciences and Engineering, 63(1), 25-31. https://doi.org/10.33769/aupse.525325
AMA Gündüç S, Eryigit R. Determining the most relevant input parameter set by using extreme learning machine. Commun.Fac.Sci.Univ.Ank.Series A2-A3: Phys.Sci. and Eng. June 2021;63(1):25-31. doi:10.33769/aupse.525325
Chicago Gündüç, Semra, and Recep Eryigit. “Determining the Most Relevant Input Parameter Set by Using Extreme Learning Machine”. Communications Faculty of Sciences University of Ankara Series A2-A3 Physical Sciences and Engineering 63, no. 1 (June 2021): 25-31. https://doi.org/10.33769/aupse.525325.
EndNote Gündüç S, Eryigit R (June 1, 2021) Determining the most relevant input parameter set by using extreme learning machine. Communications Faculty of Sciences University of Ankara Series A2-A3 Physical Sciences and Engineering 63 1 25–31.
IEEE S. Gündüç and R. Eryigit, “Determining the most relevant input parameter set by using extreme learning machine”, Commun.Fac.Sci.Univ.Ank.Series A2-A3: Phys.Sci. and Eng., vol. 63, no. 1, pp. 25–31, 2021, doi: 10.33769/aupse.525325.
ISNAD Gündüç, Semra - Eryigit, Recep. “Determining the Most Relevant Input Parameter Set by Using Extreme Learning Machine”. Communications Faculty of Sciences University of Ankara Series A2-A3 Physical Sciences and Engineering 63/1 (June 2021), 25-31. https://doi.org/10.33769/aupse.525325.
JAMA Gündüç S, Eryigit R. Determining the most relevant input parameter set by using extreme learning machine. Commun.Fac.Sci.Univ.Ank.Series A2-A3: Phys.Sci. and Eng. 2021;63:25–31.
MLA Gündüç, Semra and Recep Eryigit. “Determining the Most Relevant Input Parameter Set by Using Extreme Learning Machine”. Communications Faculty of Sciences University of Ankara Series A2-A3 Physical Sciences and Engineering, vol. 63, no. 1, 2021, pp. 25-31, doi:10.33769/aupse.525325.
Vancouver Gündüç S, Eryigit R. Determining the most relevant input parameter set by using extreme learning machine. Commun.Fac.Sci.Univ.Ank.Series A2-A3: Phys.Sci. and Eng. 2021;63(1):25-31.

Communications Faculty of Sciences University of Ankara Series A2-A3 Physical Sciences and Engineering

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.