Research Article
BibTex RIS Cite
Year 2021, , 42 - 57, 30.06.2021
https://doi.org/10.33769/aupse.766178

Abstract

References

  • Tomita, M., Murakami, M., High-temperature superconductor bulk magnets that can trap magnetic fields of over 17 T at 29 K, Nature, 421 (2003), 517-520. https://doi.org/10.1038/nature01350
  • Muralidhar, M., Superconductivity: Applications Today and Tomorrow, NOVA Science, New York, 2015.
  • Campbell, A.M., Cardwell, D.A., Bulk high temperature superconductors for magnet applications, Cryogenics, 37 (10) (1997), 567-575. https://doi.org/10.1016/S0011- 2275(97)00068-4
  • Hellman, F., Gyorgy, E.M., Johnson, D.W., Wang, J.R., Sherwood, R.C., Levitation of a magnet over a flat type II superconductor, J. Appl. Phys., 63 (1988), 447-450. https://doi.org/10.1063/1.340262
  • Huang, J., Li, L., Wang, X., Qi, Z., Sebastian, M.A.P., Haugan, T.J., Wang, H., Enhanced flux pinning properties of YBCO thin films with various pinning landscapes, IEEE T. Appl. Supercon., 27 (4) (2017), 8000305. https://doi: 10.1109/TASC.2016.2637315
  • Kim, C.J., Yoon, J.S., No, K., Han, S.C., Han, Y.H., Jun, B.H., Enhanced flux pinning and formation of Ba4Y2CuMoOy in top-seeded melt growth processed YBa2Cu3O7−d superconductors with Mo additions, Supercond. Sci. Tech., 23 (12) (2010), 125009. https://doi.org/10.1088/0953-2048/23/12/125009
  • Askerzade, I., Unconventional superconductors: anisotropy and multiband effects, Springer, 2012. https://doi.org/10.1007/978-3-642-22652-6
  • Askerzade, I., Süperiletkenlik Fiziğine Giriş, Gazi Kitabevi, Ankara, 2005.
  • Ozabaci, M., Contrasting effects of metal oxide dopants on the superconductivity of YBa2Cu3O(7-delta) ceramics, J. Mater. Sci.-Mater. El., 30 (2019), 20198-20204. https://doi.org/10.1007/s10854-019-02403-9
  • Vovk, R.V., Khadzhai, G.Y., Dobrovolskiy, O.V., Incoherent charge transport induced by irradiation of YBCO single crystals with MeV electrons, J. Mater. Sci.-Mater. El., 30 (2019), 4766-4769. https://doi.org/10.1007/s10854-019-00770-x
  • Kabutoya, T., Koshimizu, M., Fujimoto, Y., Asai, K., X-ray Irradiation effects on the superconductive properties of YBa2Cu3Oy and GdBa2Cu3Oz, Sensor Mater., 29 (2017), 1465-1470. https://doi.org/10.18494/SAM.2017.1627
  • Sueyoshi, T., Kotaki, T., Uraguchi, Y., Suenaga, M., Makihara, T., Fujiyoshi, T., Ishikawa, N., Flux pinning properties in YBCO films with growth-controlled nano-dots and heavy-ion irradiation defects, Physica C, 530 (2016), 72-75. http://dx.doi.org/10.1016/j.physc.2016.04.011
  • Dadras, S., Falahati, S., Dehghani, S., Effects of graphene oxide doping on the structural and superconducting properties of YBa2Cu3O(7−delta), Physica C, 548 (2018), 65-67. https://doi.org/10.1016/j.physc.2018.02.010
  • Mahtali, M., Boudjema, E.H., Labbani, R., Chamekh, S., Bouabellou, Taoufik, A., Simon, C., Superconducting properties of YBaCuO ceramic doped with Ca and Zn+, Surf. Interface Anal., 42 (2010), 935-940 https://doi.org/10.1002/sia.3236
  • Lazic, P., Pelc, D., Pozek, M., Despoja, V., Sunko, D.K., Effects of Sr and Zn doping on the metallicity and superconductivity of LSCO and YBCO, J. Supercond. Nov. Magn., 28 (2015), 1299-1303. https://doi.org/10.1007/s10948-014-2909-1
  • Savich, S.V., Samoylov, A.V., Kamchatnaya, S.N., Dobrovolskiy, O.V., Vovk, R.V., Solovjov, A.L., Omelchenko, L.V., Suppression of the order–disorder transition in Ti-doped YBaCuO compounds, J. Mater. Sci.-Mater. El., 28 (2017), 11415-11419. https://doi.org/10.1007/s10854-017-6936-0
  • Xu, Y., Suo, H.L., Yue, Z., Grivel, J.C., Liu, M., Jc enhancement by La-Al-O doping in Y-Ba-Cu-O films both in self-field and under magnetic field, IEEE T. Appl. Supercon., 26 (3) (2016), 6602804. https://doi.org/10.1109/TASC.2016.2536805
  • Sun, M., Liu, Z., Bai, C., Guo, Y., Lu, Y., Fan, F., Cai, C., Co-doping effects of Gd and Ag on YBCO films derived by metalorganic deposition, Physica C, 519 (2015), 47-52. http://dx.doi.org/10.1016/j.physc.2015.08.011
  • Ai, X., Sun, A., Ma, L., Zhao, D., Zhang, Y., Luo, J., Co-doping effects of Ca and Ce on the superconducting properties in Y1−xCax(Ba1−yCey)2Cu3O(7−delta), J. Supercond. Nov. Magn., 25 (2012), 805-809. https://doi.org/10.1007/s10948-011-1349-4
  • Slimani, Y., Hannachi. E., Salem, M.K.B., Hamrita, A., Varilci, A., Dachraoui, W., Ben Salem, M., Ben Azzouz, F., Comparative study of nano-sized particles CoFe2O4 effects on superconducting properties of Y-123 and Y-358, Physica B, 450 (2014), 7-15. http://dx.doi.org/10.1016/j.physb.2014.06.003
  • Akyüz, G.B., Kocabaş, K., Yıldız, A., Özyüzer, L., Çiftçioğlu, M., The effects of Sb substitution on structural properties in YBa2Cu3O7 superconductors, J. Supercond. Nov. Magn., 24 (2011), 2189-2201. https://doi.org/10.1007/s10948-011-1180-y
  • Moutalibi, N., M’chirgui, A., Noudem, J., Alumina nano-inclusions as effective flux pinning centers in Y–Ba–Cu–O superconductor fabricated by seeded infiltration and growth, Physica C, 470 (2010), 568-574. https://doi.org/10.1016/j.physc.2010.05.012
  • Yeoh, W.K., Pathak, S.K., Shi, Y., Dennis, A.R., Cardwell, D.A., Babu, N.H., Strasik, M., Improved flux pinning in Y–Ba–Cu–O superconductors containing niobium oxide, IEEE T. Appl. Supercon., 19 (3) (2009), 2970-2973. https://doi.org/10.1109/TASC.2009.2019131
  • Tinkham, M., Resistive Transition of High-Temperature Superconductors, Phys. Rev. Lett., 61 (14) (1988), 1658-1661. https://doi.org/10.1103/PhysRevLett.61.165857
  • Inui, M., Littlewood, P.B., Coppersmith, S.N., Pinning and thermal fluctuations of a flux line in high-temperature superconductors, Phys. Rev. Lett., 63 (21) (1989), 2421-2424. https://doi.org/10.1103/PhysRevLett.63.2421
  • Kandyel, E., Salem, A., Alqarni, A., Synthesis and characterization of doped YBa2Cu4O8 superconductor by Cd+2, J. Supercond. Nov. Magn., 26 (2013), 3363-3368. https://doi.org/10.1007/s10948-013-2199-z
  • Delorme, F., Harnois, C., Monot-Laffez, I., Bismuth doping of top-seeding melt-texture grown YBa2Cu3O(7−delta) ceramics, Supercond. Sci. Tech., 16 (7) (2003), 739-747.
  • Wimbush, S.C., Marx, W., Barth, A., Hall, S.R., On the incorporation of beryllium into the biotemplated synthesis of YBa2Cu3O(7−delta), Supercond. Sci. Tech., 23 (9) (2010), 095003. https://doi.org/10.1088/0953-2048/23/9/095003
  • Salem, M.K.B., Almessiere, M.A., Al-Otaibi, A.L., Salem, M.B., Azzouz, F.B., Effect of SiO2 nano-particles and nano-wires on microstructure and pinning properties of YBa2Cu3O7-d, J. Alloy. Compd., 657 (2016), 286-295. http://dx.doi.org/10.1016/j.jallcom.2015.10.077
  • Jaroszynski, J., Hunte, F., Balicas, L., Jo, Y., Raicevic, I., Gurevich, A., Larbalestier, D.C., Balakirev, F.F., Fang, L., Cheng, P., Jia, Y., Wen, H.H., Upper critical fields and thermally-activated transport of NdFeAsO0.7F0.3 single crystal, Phys. Rev. B, 78 (2008), 174523. https://doi.org/10.1103/PhysRevB.78.174523
  • Hamad, R.M., Kayed, T.S., Kunwar, S., Ziq, K.A., Thermally activated flux flow in FeSe0.5Te0.5 superconducting single crystal, J. Phys. Conf. Ser., 869 (2017), 012034. https://doi.org/10.1088/1742-6596/869/1/012034
  • Anderson, P.W., Theory of flux creep in hard superconductors, Phys. Rev. Lett., 9 (7) (1962), 309-311. https://doi.org/10.1103/PhysRevLett.9.309
  • Kim, Y.B., Hempstead, C.F., Strnad, A.R., Flux creep in hard superconductors, Phys. Rev. Lett., 131 (6) (1963), 2486-2495. https://doi.org/10.1103/PhysRev.131.2486
  • Werthamer, N.R., Helfand, E., Hohenberg, P.C., Temperature and purity dependence of the superconducting critical field, Hc2. III. Electron Spin and Spin-Orbit Effects, Phys. Rev., 147 (1) (1966), 295-302. https://doi.org/10.1103/PhysRev.147.295
  • Umakoshi, Y., Takahara. W., Hamada, K., Yamane, T., Effect of samarium and lanthanum substitution on the stability of superconductive properties of YBa2Cu3Ox, J. Mater. Sci., 26 (1991), 393-398.
  • Çakır, B., Aydıner, A., Structural and magnetic properties of the ring shaped 40 wt% Y211 added TSMG Y123 bulk superconductors welded by Ag2O added MPMG YBCO solder material, J. Mater. Sci.-Mater. El., 28 (2017), 17098-17106. https://doi.org/10.1007/s10854-017-7636-5
  • Malik, B.A., Asokan, K., Ganesan, V., Singh, D., Malik, A.M., The magnetoresistance of YBCO/BZO composite superconductors, Physica C, 531 (2016), 85-92. http://dx.doi.org/10.1016/j.physc.2016.11.004

Impurity effects on activation energy, structure and physical properties of Ybco superconductor

Year 2021, , 42 - 57, 30.06.2021
https://doi.org/10.33769/aupse.766178

Abstract

The influence of separately added 0.3 wt%, CdO, Bi2O3, BeO and SiO2 on the phase formation, microstructure, magnetic and transport properties of Y1Ba2Cu3O(7-$\delta$)  (Y-123 or YBCO) fabricated by conventional solid state reaction method has been analyzed. The results reveal a very low solubility limit for bismuth and silicon in the Y-123 phase, leading to precipitation phases located within intergranular regions. BeO addition suppresses the granular nature of the structure by probably incorporating into the host matrix. CdO does not have a remarkable effect both on structural and superconducting properties of the Y-123 at this doping ratio. Attractive infield transition behavior was obtained in the Bi2O3 added sample with a narrower transition width and an increase of transition temperatures approximately 1 K. The activation energy (U0), a potential energy barrier to prevent flux flow, of the samples was estimated by taking into account Arrhenius law. The best U0 value was computed to be 1.11 eV belonging to the Bi2O3 added sample which implies the contribution of 3-5 µm sized Bi containing precipitation regions on the flux pinning capability of the Y-123.

References

  • Tomita, M., Murakami, M., High-temperature superconductor bulk magnets that can trap magnetic fields of over 17 T at 29 K, Nature, 421 (2003), 517-520. https://doi.org/10.1038/nature01350
  • Muralidhar, M., Superconductivity: Applications Today and Tomorrow, NOVA Science, New York, 2015.
  • Campbell, A.M., Cardwell, D.A., Bulk high temperature superconductors for magnet applications, Cryogenics, 37 (10) (1997), 567-575. https://doi.org/10.1016/S0011- 2275(97)00068-4
  • Hellman, F., Gyorgy, E.M., Johnson, D.W., Wang, J.R., Sherwood, R.C., Levitation of a magnet over a flat type II superconductor, J. Appl. Phys., 63 (1988), 447-450. https://doi.org/10.1063/1.340262
  • Huang, J., Li, L., Wang, X., Qi, Z., Sebastian, M.A.P., Haugan, T.J., Wang, H., Enhanced flux pinning properties of YBCO thin films with various pinning landscapes, IEEE T. Appl. Supercon., 27 (4) (2017), 8000305. https://doi: 10.1109/TASC.2016.2637315
  • Kim, C.J., Yoon, J.S., No, K., Han, S.C., Han, Y.H., Jun, B.H., Enhanced flux pinning and formation of Ba4Y2CuMoOy in top-seeded melt growth processed YBa2Cu3O7−d superconductors with Mo additions, Supercond. Sci. Tech., 23 (12) (2010), 125009. https://doi.org/10.1088/0953-2048/23/12/125009
  • Askerzade, I., Unconventional superconductors: anisotropy and multiband effects, Springer, 2012. https://doi.org/10.1007/978-3-642-22652-6
  • Askerzade, I., Süperiletkenlik Fiziğine Giriş, Gazi Kitabevi, Ankara, 2005.
  • Ozabaci, M., Contrasting effects of metal oxide dopants on the superconductivity of YBa2Cu3O(7-delta) ceramics, J. Mater. Sci.-Mater. El., 30 (2019), 20198-20204. https://doi.org/10.1007/s10854-019-02403-9
  • Vovk, R.V., Khadzhai, G.Y., Dobrovolskiy, O.V., Incoherent charge transport induced by irradiation of YBCO single crystals with MeV electrons, J. Mater. Sci.-Mater. El., 30 (2019), 4766-4769. https://doi.org/10.1007/s10854-019-00770-x
  • Kabutoya, T., Koshimizu, M., Fujimoto, Y., Asai, K., X-ray Irradiation effects on the superconductive properties of YBa2Cu3Oy and GdBa2Cu3Oz, Sensor Mater., 29 (2017), 1465-1470. https://doi.org/10.18494/SAM.2017.1627
  • Sueyoshi, T., Kotaki, T., Uraguchi, Y., Suenaga, M., Makihara, T., Fujiyoshi, T., Ishikawa, N., Flux pinning properties in YBCO films with growth-controlled nano-dots and heavy-ion irradiation defects, Physica C, 530 (2016), 72-75. http://dx.doi.org/10.1016/j.physc.2016.04.011
  • Dadras, S., Falahati, S., Dehghani, S., Effects of graphene oxide doping on the structural and superconducting properties of YBa2Cu3O(7−delta), Physica C, 548 (2018), 65-67. https://doi.org/10.1016/j.physc.2018.02.010
  • Mahtali, M., Boudjema, E.H., Labbani, R., Chamekh, S., Bouabellou, Taoufik, A., Simon, C., Superconducting properties of YBaCuO ceramic doped with Ca and Zn+, Surf. Interface Anal., 42 (2010), 935-940 https://doi.org/10.1002/sia.3236
  • Lazic, P., Pelc, D., Pozek, M., Despoja, V., Sunko, D.K., Effects of Sr and Zn doping on the metallicity and superconductivity of LSCO and YBCO, J. Supercond. Nov. Magn., 28 (2015), 1299-1303. https://doi.org/10.1007/s10948-014-2909-1
  • Savich, S.V., Samoylov, A.V., Kamchatnaya, S.N., Dobrovolskiy, O.V., Vovk, R.V., Solovjov, A.L., Omelchenko, L.V., Suppression of the order–disorder transition in Ti-doped YBaCuO compounds, J. Mater. Sci.-Mater. El., 28 (2017), 11415-11419. https://doi.org/10.1007/s10854-017-6936-0
  • Xu, Y., Suo, H.L., Yue, Z., Grivel, J.C., Liu, M., Jc enhancement by La-Al-O doping in Y-Ba-Cu-O films both in self-field and under magnetic field, IEEE T. Appl. Supercon., 26 (3) (2016), 6602804. https://doi.org/10.1109/TASC.2016.2536805
  • Sun, M., Liu, Z., Bai, C., Guo, Y., Lu, Y., Fan, F., Cai, C., Co-doping effects of Gd and Ag on YBCO films derived by metalorganic deposition, Physica C, 519 (2015), 47-52. http://dx.doi.org/10.1016/j.physc.2015.08.011
  • Ai, X., Sun, A., Ma, L., Zhao, D., Zhang, Y., Luo, J., Co-doping effects of Ca and Ce on the superconducting properties in Y1−xCax(Ba1−yCey)2Cu3O(7−delta), J. Supercond. Nov. Magn., 25 (2012), 805-809. https://doi.org/10.1007/s10948-011-1349-4
  • Slimani, Y., Hannachi. E., Salem, M.K.B., Hamrita, A., Varilci, A., Dachraoui, W., Ben Salem, M., Ben Azzouz, F., Comparative study of nano-sized particles CoFe2O4 effects on superconducting properties of Y-123 and Y-358, Physica B, 450 (2014), 7-15. http://dx.doi.org/10.1016/j.physb.2014.06.003
  • Akyüz, G.B., Kocabaş, K., Yıldız, A., Özyüzer, L., Çiftçioğlu, M., The effects of Sb substitution on structural properties in YBa2Cu3O7 superconductors, J. Supercond. Nov. Magn., 24 (2011), 2189-2201. https://doi.org/10.1007/s10948-011-1180-y
  • Moutalibi, N., M’chirgui, A., Noudem, J., Alumina nano-inclusions as effective flux pinning centers in Y–Ba–Cu–O superconductor fabricated by seeded infiltration and growth, Physica C, 470 (2010), 568-574. https://doi.org/10.1016/j.physc.2010.05.012
  • Yeoh, W.K., Pathak, S.K., Shi, Y., Dennis, A.R., Cardwell, D.A., Babu, N.H., Strasik, M., Improved flux pinning in Y–Ba–Cu–O superconductors containing niobium oxide, IEEE T. Appl. Supercon., 19 (3) (2009), 2970-2973. https://doi.org/10.1109/TASC.2009.2019131
  • Tinkham, M., Resistive Transition of High-Temperature Superconductors, Phys. Rev. Lett., 61 (14) (1988), 1658-1661. https://doi.org/10.1103/PhysRevLett.61.165857
  • Inui, M., Littlewood, P.B., Coppersmith, S.N., Pinning and thermal fluctuations of a flux line in high-temperature superconductors, Phys. Rev. Lett., 63 (21) (1989), 2421-2424. https://doi.org/10.1103/PhysRevLett.63.2421
  • Kandyel, E., Salem, A., Alqarni, A., Synthesis and characterization of doped YBa2Cu4O8 superconductor by Cd+2, J. Supercond. Nov. Magn., 26 (2013), 3363-3368. https://doi.org/10.1007/s10948-013-2199-z
  • Delorme, F., Harnois, C., Monot-Laffez, I., Bismuth doping of top-seeding melt-texture grown YBa2Cu3O(7−delta) ceramics, Supercond. Sci. Tech., 16 (7) (2003), 739-747.
  • Wimbush, S.C., Marx, W., Barth, A., Hall, S.R., On the incorporation of beryllium into the biotemplated synthesis of YBa2Cu3O(7−delta), Supercond. Sci. Tech., 23 (9) (2010), 095003. https://doi.org/10.1088/0953-2048/23/9/095003
  • Salem, M.K.B., Almessiere, M.A., Al-Otaibi, A.L., Salem, M.B., Azzouz, F.B., Effect of SiO2 nano-particles and nano-wires on microstructure and pinning properties of YBa2Cu3O7-d, J. Alloy. Compd., 657 (2016), 286-295. http://dx.doi.org/10.1016/j.jallcom.2015.10.077
  • Jaroszynski, J., Hunte, F., Balicas, L., Jo, Y., Raicevic, I., Gurevich, A., Larbalestier, D.C., Balakirev, F.F., Fang, L., Cheng, P., Jia, Y., Wen, H.H., Upper critical fields and thermally-activated transport of NdFeAsO0.7F0.3 single crystal, Phys. Rev. B, 78 (2008), 174523. https://doi.org/10.1103/PhysRevB.78.174523
  • Hamad, R.M., Kayed, T.S., Kunwar, S., Ziq, K.A., Thermally activated flux flow in FeSe0.5Te0.5 superconducting single crystal, J. Phys. Conf. Ser., 869 (2017), 012034. https://doi.org/10.1088/1742-6596/869/1/012034
  • Anderson, P.W., Theory of flux creep in hard superconductors, Phys. Rev. Lett., 9 (7) (1962), 309-311. https://doi.org/10.1103/PhysRevLett.9.309
  • Kim, Y.B., Hempstead, C.F., Strnad, A.R., Flux creep in hard superconductors, Phys. Rev. Lett., 131 (6) (1963), 2486-2495. https://doi.org/10.1103/PhysRev.131.2486
  • Werthamer, N.R., Helfand, E., Hohenberg, P.C., Temperature and purity dependence of the superconducting critical field, Hc2. III. Electron Spin and Spin-Orbit Effects, Phys. Rev., 147 (1) (1966), 295-302. https://doi.org/10.1103/PhysRev.147.295
  • Umakoshi, Y., Takahara. W., Hamada, K., Yamane, T., Effect of samarium and lanthanum substitution on the stability of superconductive properties of YBa2Cu3Ox, J. Mater. Sci., 26 (1991), 393-398.
  • Çakır, B., Aydıner, A., Structural and magnetic properties of the ring shaped 40 wt% Y211 added TSMG Y123 bulk superconductors welded by Ag2O added MPMG YBCO solder material, J. Mater. Sci.-Mater. El., 28 (2017), 17098-17106. https://doi.org/10.1007/s10854-017-7636-5
  • Malik, B.A., Asokan, K., Ganesan, V., Singh, D., Malik, A.M., The magnetoresistance of YBCO/BZO composite superconductors, Physica C, 531 (2016), 85-92. http://dx.doi.org/10.1016/j.physc.2016.11.004
There are 37 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Research Articles
Authors

Murat Özabacı 0000-0002-0667-6066

Publication Date June 30, 2021
Submission Date July 7, 2020
Acceptance Date March 11, 2021
Published in Issue Year 2021

Cite

APA Özabacı, M. (2021). Impurity effects on activation energy, structure and physical properties of Ybco superconductor. Communications Faculty of Sciences University of Ankara Series A2-A3 Physical Sciences and Engineering, 63(1), 42-57. https://doi.org/10.33769/aupse.766178
AMA Özabacı M. Impurity effects on activation energy, structure and physical properties of Ybco superconductor. Commun.Fac.Sci.Univ.Ank.Series A2-A3: Phys.Sci. and Eng. June 2021;63(1):42-57. doi:10.33769/aupse.766178
Chicago Özabacı, Murat. “Impurity Effects on Activation Energy, Structure and Physical Properties of Ybco Superconductor”. Communications Faculty of Sciences University of Ankara Series A2-A3 Physical Sciences and Engineering 63, no. 1 (June 2021): 42-57. https://doi.org/10.33769/aupse.766178.
EndNote Özabacı M (June 1, 2021) Impurity effects on activation energy, structure and physical properties of Ybco superconductor. Communications Faculty of Sciences University of Ankara Series A2-A3 Physical Sciences and Engineering 63 1 42–57.
IEEE M. Özabacı, “Impurity effects on activation energy, structure and physical properties of Ybco superconductor”, Commun.Fac.Sci.Univ.Ank.Series A2-A3: Phys.Sci. and Eng., vol. 63, no. 1, pp. 42–57, 2021, doi: 10.33769/aupse.766178.
ISNAD Özabacı, Murat. “Impurity Effects on Activation Energy, Structure and Physical Properties of Ybco Superconductor”. Communications Faculty of Sciences University of Ankara Series A2-A3 Physical Sciences and Engineering 63/1 (June 2021), 42-57. https://doi.org/10.33769/aupse.766178.
JAMA Özabacı M. Impurity effects on activation energy, structure and physical properties of Ybco superconductor. Commun.Fac.Sci.Univ.Ank.Series A2-A3: Phys.Sci. and Eng. 2021;63:42–57.
MLA Özabacı, Murat. “Impurity Effects on Activation Energy, Structure and Physical Properties of Ybco Superconductor”. Communications Faculty of Sciences University of Ankara Series A2-A3 Physical Sciences and Engineering, vol. 63, no. 1, 2021, pp. 42-57, doi:10.33769/aupse.766178.
Vancouver Özabacı M. Impurity effects on activation energy, structure and physical properties of Ybco superconductor. Commun.Fac.Sci.Univ.Ank.Series A2-A3: Phys.Sci. and Eng. 2021;63(1):42-57.

Communications Faculty of Sciences University of Ankara Series A2-A3 Physical Sciences and Engineering

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.