MOVING OBJECT DETECTION AND CLASSIFICATION IN SURVEILLANCE SYSTEMS USING MOVING CAMERAS
Year 2018,
Volume: 60 Issue: 2, 63 - 82, 01.08.2018
Ozge Mercanoglu Sincan
,
Hacer Yalim Keles
,
Suleyman Tosun
Abstract
In this paper, we
present a novel method to detect and classify moving objects from surveillance
videos that are obtained from a moving camera. In our method, we first estimate
the camera motion by interpreting the movement of interest points in the scene.
Then, we eliminate the camera motion and find candidate regions that belong to
the moving objects. Considering these regions as priors, we apply an efficient
segmentation algorithm to obtain accurate object boundaries for the moving
objects. Finally, we classify the detected objects as people, vehicle, or
others using some morphological features and the velocity vectors of moving
objects. The evaluation of the proposed approach on our surveillance dataset
shows that our approach is very effective for determining the classes of moving
objects in a moving camera setting.
References
- P. Remagnino, S. A. Velastin, G. L. Foresti, and M. Trivedi, Novel concepts and challenges for the next generation of video surveillance systems, Machine Vision and Applications, 18/3 (2007) 135-137.
- R. Vezzani and R. Cucchiara, Video surveillance online repository (visor): an integrated framework, Multimedia Tools and Applications, 50/2 (2010) 359-380.
- K. A. Joshi and D. G. Thakore, A survey on moving object detection and tracking in video surveillance system, International Journal of Soft Computing and Engineering, 2/3 (2012) 44-48.
- M. Chate, S. Amudha, V. Gohokar, Object detection and tracking in video sequences, ACEEE International Journal on signal & Image processing, 3/1 (2012).
- W.-C. Hu, C.-H. Chen, T.-Y. Chen, D.-Y. Huang, and Z.-C. Wu, Moving object detection and tracking from video captured by moving camera, Journal of Visual Communication and Image Representation, 30 (2015) 164-180.
- S. W. Kim, K. Yun, K. M. Yi, S. J. Kim, and J. Y. Choi, Detection of moving objects with a moving camera using non-panoramic background model. Machine Vision and Applications, 24/5 (2013) 1015-1028.
- N. Thakoor, J. Gao, and H. Chen, Automatic object detection in video sequences with camera in, In Proceedings of Advanced Concepts for Intelligent Vision Systems, Citeseer, 2004.
- Y. Wu, X. He, and T. Q. Nguyen, Moving object detection with a freely moving camera via background motion subtraction, IEEE Transactions on Circuits and Systems for Video Technology, 27/2 (2017) 236-248.
- K. Yun, J. Lim, and J. Y. Choi, Scene conditional background update for moving object detection in a moving camera, Pattern Recognition Letters, 88 (2017) 57-63.
- O. M. Sincan, V. B. Ajabshir, H. Y. Keles, and S. Tosun. Moving object detection by a mounted moving camera, EUROCON 2015 - International Conference on Computer as a Tool (EUROCON), IEEE, Sept 2015.
- L. Bo and Z. Heqin, Using object classification to improve urban traffic monitoring system, In International Conference on Neural Networks and Signal Processing, 2 (2003) 1155-1159.
- L. Chen, R. Feris, Y. Zhai, L. Brown, and A. Hampapur, An integrated system for moving object classification in surveillance videos, In 2008 IEEE Fifth International Conference on Advanced Video and Signal Based Surveillance, (2008) 52-59.
- M. Elhoseiny, A. Bakry, and A. Elgammal, Multiclass object classification in video surveillance systems-experimental study, In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, (2013) 788-793.
- O. Javed and M. Shah, Tracking and Object Classification for Automated Surveillance, Springer Berlin Heidelberg, (2002) 343-357.
- A. Senior, A. Hampapur, Y.-L. Tian, L. Brown, S. Pankanti, and R. Bolle, Appearance models for occlusion handling. Image and Vision Computing, Performance Evaluation of Tracking and Surveillance, 24/11 (2006) 1233-1243.
- A. A. Shafie, A. B. M. Ibrahim, and M. M. Rashid, Smart objects identification system for robotic surveillance, International Journal of Automation and Computing, 11/1 (2014) 59-71.
- Y. Gurwicz, R. Yehezkel, and B. Lachover, Multiclass object classification for real-time video surveillance systems, Pattern Recognition Letters, 32/6 (2011) 805-815.
- S. Oh, A. Hoogs, A. Perera, N. Cuntoor, C. C. Chen, J. T. Lee, S. Mukherjee, J. K. Aggarwal, H. Lee, L. Davis, E. Swears, X. Wang, Q. Ji, K. Reddy, M. Shah, C. Vondrick, H. Pirsiavash, D. Ramanan, J. Yuen, A. Torralba, B. Song, A. Fong, A. Roy-Chowdhury, and M. Desai, A large-scale benchmark dataset for event recognition in surveillance video, In Computer vision and pattern recognition (CVPR), (2011) 3153-3160.
- A. García-Martín and J. M. Martínez, People detection in surveillance: classification and evaluation, IET Computer Vision, 9/5 (2015) 779-788.
- C. Hua, Y. Makihara, Y. Yagi, S. Iwasaki, K. Miyagawa, and B. Li, Onboard monocular pedestrian detection by combining spatio-temporal hog with structure from motion algorithm, Machine Vision and Applications, (2015) 26/2 161-183.
- B. D. Lucas, T. Kanade, An iterative image registration technique with an application to stereo vision, In IJCAI, (1981) 81 674-679.
- R. Hartley, R. Gupta, and T. Chang, Stereo from uncalibrated cameras, In Proceedings 1992 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, (1992) 761-764.
- A. Prioletti, A. MGelmose, P. Grisleri, M. M. Trivedi, A. Broggi, and T. B. Moeslund, Part-based pedestrian detection and feature-based tracking for driver assistance: Real-time, robust algorithms, and evaluation, IEEE Transactions on Intelligent Transportation Systems, (2013) 14/3 1346-1359.
- I. Jegham and A. B. Khalifa, Pedestrian detection in poor weather conditions using moving camera, In Computer Systems and Applications (AICCSA), 2017 IEEE/ACS 14th International Conference on, (2017) 358-362.
- J. Shi and C. Tomasi. Good features to track, In 1994 Proceedings of IEEE Conference on Computer Vision Pattern Recognition, (1994) 593-600.
- G. Bradski and A. Kaehler, Learning OpenCV: Computer vision with the OpenCV library, O'Reilly Media, Inc., 2008.
- C. Rother, V. Kolmogorov, and A. Blake, Grabcut: Interactive foreground extraction using graph cuts, In ACM transactions on graphics (TOG), (2004) 23 309-314.
Year 2018,
Volume: 60 Issue: 2, 63 - 82, 01.08.2018
Ozge Mercanoglu Sincan
,
Hacer Yalim Keles
,
Suleyman Tosun
References
- P. Remagnino, S. A. Velastin, G. L. Foresti, and M. Trivedi, Novel concepts and challenges for the next generation of video surveillance systems, Machine Vision and Applications, 18/3 (2007) 135-137.
- R. Vezzani and R. Cucchiara, Video surveillance online repository (visor): an integrated framework, Multimedia Tools and Applications, 50/2 (2010) 359-380.
- K. A. Joshi and D. G. Thakore, A survey on moving object detection and tracking in video surveillance system, International Journal of Soft Computing and Engineering, 2/3 (2012) 44-48.
- M. Chate, S. Amudha, V. Gohokar, Object detection and tracking in video sequences, ACEEE International Journal on signal & Image processing, 3/1 (2012).
- W.-C. Hu, C.-H. Chen, T.-Y. Chen, D.-Y. Huang, and Z.-C. Wu, Moving object detection and tracking from video captured by moving camera, Journal of Visual Communication and Image Representation, 30 (2015) 164-180.
- S. W. Kim, K. Yun, K. M. Yi, S. J. Kim, and J. Y. Choi, Detection of moving objects with a moving camera using non-panoramic background model. Machine Vision and Applications, 24/5 (2013) 1015-1028.
- N. Thakoor, J. Gao, and H. Chen, Automatic object detection in video sequences with camera in, In Proceedings of Advanced Concepts for Intelligent Vision Systems, Citeseer, 2004.
- Y. Wu, X. He, and T. Q. Nguyen, Moving object detection with a freely moving camera via background motion subtraction, IEEE Transactions on Circuits and Systems for Video Technology, 27/2 (2017) 236-248.
- K. Yun, J. Lim, and J. Y. Choi, Scene conditional background update for moving object detection in a moving camera, Pattern Recognition Letters, 88 (2017) 57-63.
- O. M. Sincan, V. B. Ajabshir, H. Y. Keles, and S. Tosun. Moving object detection by a mounted moving camera, EUROCON 2015 - International Conference on Computer as a Tool (EUROCON), IEEE, Sept 2015.
- L. Bo and Z. Heqin, Using object classification to improve urban traffic monitoring system, In International Conference on Neural Networks and Signal Processing, 2 (2003) 1155-1159.
- L. Chen, R. Feris, Y. Zhai, L. Brown, and A. Hampapur, An integrated system for moving object classification in surveillance videos, In 2008 IEEE Fifth International Conference on Advanced Video and Signal Based Surveillance, (2008) 52-59.
- M. Elhoseiny, A. Bakry, and A. Elgammal, Multiclass object classification in video surveillance systems-experimental study, In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, (2013) 788-793.
- O. Javed and M. Shah, Tracking and Object Classification for Automated Surveillance, Springer Berlin Heidelberg, (2002) 343-357.
- A. Senior, A. Hampapur, Y.-L. Tian, L. Brown, S. Pankanti, and R. Bolle, Appearance models for occlusion handling. Image and Vision Computing, Performance Evaluation of Tracking and Surveillance, 24/11 (2006) 1233-1243.
- A. A. Shafie, A. B. M. Ibrahim, and M. M. Rashid, Smart objects identification system for robotic surveillance, International Journal of Automation and Computing, 11/1 (2014) 59-71.
- Y. Gurwicz, R. Yehezkel, and B. Lachover, Multiclass object classification for real-time video surveillance systems, Pattern Recognition Letters, 32/6 (2011) 805-815.
- S. Oh, A. Hoogs, A. Perera, N. Cuntoor, C. C. Chen, J. T. Lee, S. Mukherjee, J. K. Aggarwal, H. Lee, L. Davis, E. Swears, X. Wang, Q. Ji, K. Reddy, M. Shah, C. Vondrick, H. Pirsiavash, D. Ramanan, J. Yuen, A. Torralba, B. Song, A. Fong, A. Roy-Chowdhury, and M. Desai, A large-scale benchmark dataset for event recognition in surveillance video, In Computer vision and pattern recognition (CVPR), (2011) 3153-3160.
- A. García-Martín and J. M. Martínez, People detection in surveillance: classification and evaluation, IET Computer Vision, 9/5 (2015) 779-788.
- C. Hua, Y. Makihara, Y. Yagi, S. Iwasaki, K. Miyagawa, and B. Li, Onboard monocular pedestrian detection by combining spatio-temporal hog with structure from motion algorithm, Machine Vision and Applications, (2015) 26/2 161-183.
- B. D. Lucas, T. Kanade, An iterative image registration technique with an application to stereo vision, In IJCAI, (1981) 81 674-679.
- R. Hartley, R. Gupta, and T. Chang, Stereo from uncalibrated cameras, In Proceedings 1992 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, (1992) 761-764.
- A. Prioletti, A. MGelmose, P. Grisleri, M. M. Trivedi, A. Broggi, and T. B. Moeslund, Part-based pedestrian detection and feature-based tracking for driver assistance: Real-time, robust algorithms, and evaluation, IEEE Transactions on Intelligent Transportation Systems, (2013) 14/3 1346-1359.
- I. Jegham and A. B. Khalifa, Pedestrian detection in poor weather conditions using moving camera, In Computer Systems and Applications (AICCSA), 2017 IEEE/ACS 14th International Conference on, (2017) 358-362.
- J. Shi and C. Tomasi. Good features to track, In 1994 Proceedings of IEEE Conference on Computer Vision Pattern Recognition, (1994) 593-600.
- G. Bradski and A. Kaehler, Learning OpenCV: Computer vision with the OpenCV library, O'Reilly Media, Inc., 2008.
- C. Rother, V. Kolmogorov, and A. Blake, Grabcut: Interactive foreground extraction using graph cuts, In ACM transactions on graphics (TOG), (2004) 23 309-314.