Review
BibTex RIS Cite

Comprehensive review of smart wheelchairs for quadriplegic patients

Year 2025, Volume: 67 Issue: 1, 84 - 106
https://doi.org/10.33769/aupse.1536856

Abstract

Quadriplegia is a disease that causes the person to lose them motor movements over time thus their limbs becoming unable to move. Up to date, many smart wheelchair projects have been put forward so that individuals with this disease can control their wheelchairs by their own. In this review paper, projects and patents related to smart wheelchairs are examined and evaluated. A varied of different methods have been used for the development of novel smart wheelchair technology. Some of these are based on controlling the mechanism using eye movements and head movements. Other smart wheelchair designs incorporate both brain activation and mobile device control. The purpose of this paper is to evaluate the development methods of smart chairs in detail and to compare them in terms of their effects on human health and usefulness.

References

  • Yathunanthan, S., Chandrasena, L., Umakanthan, A., Vasuki, V., Munasinghe, S., Controlling a wheelchair by use of eog signal, 2008 4th International Conference on Information and Automation for Sustainability IEEE, (2008), 283-288, https://doi.org/10.1109/ICIAFS.2008.4783987.
  • Arai, K., Mardiyanto, R., A prototype of electric wheelchair controlled by eye-only for paralyzed user, J. Robot. Mechatron., 23 (1) (2011), 66.
  • Djeha, M., Sbargoud, F., Guiatni, M., Fellah, K., Ababou, N., A combined eeg and eog signals based wheelchair control in virtual environment, IEEE 5th International Conference on Electrical Engineering-Boumerdes, (2017), 1-6, https://doi.org/10.1109/ICEE-B.2017.8192087.
  • Veerati, R., Suresh, E., Chakilam, A., Ravula, S.P., Eye monitoring based motion controlled wheelchair for quadriplegics, Microelectronics, Electromagnetics and Telecommunications, Springer, (2018), 41-49, https://doi.org/10.1007/978-981-10 7329-8_5.
  • Kanani, P., Padole, M., Iot based eye movement guided wheelchair driving control using ad8232 ecg sensor, IJRTE, 8 (4) (2019), 5013-5017.
  • Taylor, P., Nguyen, H., Performance of a head-movement interface for wheelchair control, Proceedings of the IEEE 25th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (IEEE Cat. No. 03CH37439), 2 (2003), 1590-1593, https://doi.org/10.1109/IEMBS.2003.1279669.
  • Nguyen, H., King, L., Knight, G., Real-time head movement system and embedded linux implementation for the control of power wheelchairs, The 26th IEEE Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 2, (2004), 4892-4895, https://doi.org/10.1109/IEMBS.2004.1404353.
  • Craig, D. A., Nguyen, H. T., Wireless real-time head movement system using a personal digital assistant (pda) for control of a power wheelchair, 2005 IEEE Engineering in Medicine and Biology 27th Annual Conference, (2006), 772-775, https://doi.org/10.1109/IEMBS.2005.1616529.
  • Rechy-Ramirez, E. J., Hu, H., McDonald-Maier, K., Head movements-based control of an intelligent wheelchair in an indoor environment, 2012 IEEE International Conference on Robotics and Biomimetics (ROBIO), (2012), 1464-1469, https://doi.org/10.1109/ROBIO.2012.6491175.
  • Pajkanovic, A., Dokic, B., Wheelchair control by head motion, Serb. J. Electr. l Eng., 10 (1) (2013), 135-151, https://doi.org/10.2298/SJEE1301135P.
  • Lee, G., Kim, K., Kim, J., Development of hands-free wheelchair device based on head movement and bio-signal for quadriplegic patients, IJPEM, 17 (3), (2016), 363-369.
  • Suzen, A. A., Deniz, O., Cetin, A., Kafa hareketleri ile kontrol edilebilen tekerlekli sandalye, Mehmet Akif Ersoy Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 8 (Special) (1) (2017), 66-72.
  • Sezer, V., Kafa hareketleriyle kontrol edilebilen yari-otonom elektrikli tekerlekli sandalye gelistirilmesi, Gazi Universitesi Fen Bilimleri Dergisi Part C: Tasarım ve Teknoloji, 6 (1), (2018), 221-232.
  • Gomes, D., Fernandes, F., Castro, E., Pires, G.: Head-movement interface for wheelchair driving based on inertial sensors, 2019 IEEE 6th Portuguese Meeting on Bioengineering, (2019), 1-4, https://doi.org/10.1109/ ENBENG. 2019. 8692475.
  • Tas, M. O., Tas, D. O., Yavuz, H. S., Engelli insanlar icin akilli tekerlekli sandalyenin bas hareketleri ile kontrolünün gercekleştirilmesi, Nicel Bilimler Dergisi, 2 (1) (2020), 19-32.
  • Wakaumi, H., Nakamura, K., Matsumura, T., Development of an automated wheelchair guided by a magnetic ferrite marker lane, J. Rehabil. Res. Dev., 29 (1), 27-34, (1992).
  • Katevas, N. I., Sgouros, N. M., Tzafestas, S. G., Papakonstantinou, G., Beattie, P., Bishop, J. M., Tsanakas, P., Koutsouris, D., The autonomous mobile robot senario: a sensor aided intelligent navigation system for powered wheelchairs, IEEE Robot. Autom. Mag., 4 (4) (1997), 60-70.
  • Iwase, T., Zhang, R., Kuno, Y., Robotic wheelchair moving with the caregiver, SICE-ICASE International Joint Conference - IEEE, (2006), 238-243, https://doi.org/ 10.1109/SICE.2006.315614.
  • Ferreira, A., Silva, R., Celeste, W., Bastos Filho, T., Sarcinelli Filho, M., Human- machine interface based on muscular and brain signals applied to a robotic wheelchair, Journal of Physics: Conference Series, IOP Publishing, 90 (2007), 012094, https://doi.org/10.1088/1742-6596/90/1/012094.
  • Bostelman, R., Albus, J., A multipurpose robotic wheelchair and rehabilitation device for the home, IEEE/RSJ International Conference on Intelligent Robots and Systems, (2007), 3348-3353, https://doi.org/10.1109/IROS.2007.4398980.
  • Reis, L. P., Braga, R. A., Sousa, M., Moreira, A. P., Intellwheels mmi: A flexible interface for an intelligent wheelchair, Robot Soccer World Cup, Springer, (2009), 296-307.
  • Cheein, F. A. A., De La Cruz, C., Bastos, T. F., Carelli, R., Slam-based cross-a-door solution approach for a robotic wheelchair, Int. J. Adv. Robot. Syst., 6 (3) (2009), 20, https://doi.org/10.5772/72.
  • Kinpara, Y., Takano, E., Kobayashi, Y., Kuno, Y., Situation-driven control of a robotic wheelchair to follow a caregiver, 17th IEEE Korea-Japan Joint Workshop on Frontiers of Computer Vision (FCV), (2011), 1-6, https://doi.org/10.1109/FCV.2011.5739720.
  • Tomari, M.R.M., Kobayashi, Y., Kuno, Y., Development of smart wheelchair system for a user with severe motor impairment, Procedia Eng., 41, (2012), 538-546, https://doi.org/10.1016/j.proeng.2012.07.209.
  • Mori, Y., Sakai, N., Katsumura, K., Development of a wheelchair with a lifting function, Adv. Mech. Eng., 4 (1) (2012), 803014, https://doi.org/10.1155/2012/803014.
  • Lopes, A. C., Pires, G., Nunes, U., Assisted navigation for a brain-actuated intelligent wheelchair, Robot. Auton. Syst., 61 (3) (2013), 245-258, https://doi.org/10.1016/j.robot.2012.11.002.
  • Kamaraj, D. C., Dicianno, B. E., Cooper, R. A., A participatory approach to develop the power mobility screening tool and the power mobility clinical driving assessment tool, Biomed Res. Int., 2014 (3) (2014), 541614, https://doi.org/10.1155/2014/541614.
  • Giesbrecht, E. M., Miller, W. C., Mitchell, I. M., Woodgate, R. L., Development of a wheelchair skills home program for older adults using a participatory action design approach, Biomed Res. Int., 2014 (172434) (2014), 1-13, https://doi.org/10.1155/2014/172434.
  • Grindle, G. G., Wang, H., Jeannis, H., Teodorski, E., Cooper, R. A., Design and user evaluation of a wheelchair mounted robotic assisted transfer device, Biomed Res. Int., 2015 (2015), 1-9, https://doi.org/10.1155/2015/752930.
  • Grindle, G. G., Wang, H., Jeannis, H., Teodorski, E., Cooper, R. A., Design and user evaluation of a wheelchair mounted robotic assisted transfer device, Biomed Res. Int., 2015 (2015), 1-9, https://doi.org/10.1155/2015/752930.
  • Bingol, O., Aydogan O., Ozkaya, B., Sen, N., Android cihaz ile tekerlekli sandalye kontrolü, Afyon Kocatepe Universitesi Fen ve Muhendislik Bilimleri Dergisi, 2016 (2016), 164‐169.
  • Jamin, N. F., Ghani, N. A., Two-wheeled wheelchair stabilization control using fuzzy logic controller-based particle swarm optimization, IEEE International Conference on Automatic Control and Intelligent Systems (I2CACIS), (2016), 180- 185, https://doi.org/10.1109/I2CACIS.2016.7885311.
  • Hari Krishnan, R., Pugazhenthi, S., Design and development of a wheel chair based manual self-transfer device for elderly and disabled, J. Med. Devices, 10 (2) (2016), 024501.
  • Schwesinger, D., Shariati, A., Montella, C., Spletzer, J., A smart wheelchair ecosystem for autonomous navigation in urban environments, Auton. Robots, 41 (3) (2017), 519-538, https://doi.org/10.1007/s10514-016-9549-1.
  • Kundu, A. S., Mazumder, O., Lenka, P. K., Bhaumik, S., Design and performance evaluation of 4 wheeled omni wheelchair with reduced slip and vibration, Procedia Comput. Sci., 105 (2017), 289-295, https://doi.org/10.1016/j.procs.2017.01.224.
  • Ruzaij, M. F., Neubert, S., Stoll, N., Thurow, K., Design and implementation of low- cost intelligent wheelchair controller for quadriplegias and paralysis patient, IEEE 15th International Symposium on Applied Machine Intelligence and Informatics, (2017), 399-404, https://doi.org/10.1109/SAMI.2017.7880342.
  • Devigne, L., Pasteau, F., Babel, M., Narayanan, V. K., Guegan, S., Gallien, P., Design of a haptic guidance solution for assisted power wheelchair navigation, IEEE International Conference on Systems, Man, and Cybernetics (SMC), (2018), 3231-3236, https://doi.org/10.1109/SMC.2018.00547.
  • Rabhi, Y., Mrabet, M., Fnaiech, F.: A facial expression-controlled wheelchair for people with disabilities, Comput. Methods Programs Biomed. Update, 165, (2018), 89-105, https://doi.org/10.1016/j.cmpb.2018.08.013.
  • Kaur, G., Srivastava, M., Kumar, A., Integrated speaker and speech recognition for wheelchair movement using artificial intelligence, Informatica, 42 (4), (2018).
  • Tang, J., Liu, Y., Hu, D., Zhou, Z., Towards bci-actuated smart wheelchair system, Biomed. Eng. Online, 17 (1) (2018), 1-22.
  • Hartman, A., Nandikolla, V. K., Human-machine interface for a smart wheelchair, Journal of Robotics, 2019 (3) (2019), 1-11.
  • Apu, M. A. R., Fahad, I., Fattah, S., Shahnaz, C., Eye blink controlled low cost smart wheel chair aiding disabled people, IEEE R10 Humanitarian Technology Conference, 47129 (2019), 99-103, https://doi.org/10.1109/R10- HTC47129.2019.9042446.
  • Al-Wesabi, F. N., Alamgeer, M., Al-Yarimi, F., Albaadani, A., A smart-hand movement-based system to control a wheelchair wirelessly, Sens. Mater., 31 (9) (2019), 2947-2964.
  • Chuy, O.Y., Herrero, J., Al-Selwadi, A., Mooers, A., Control and evaluation of a motorized attendant wheelchair with haptic interface, J. Med. Devices, 13 (1) (2019), https://doi.org/10.1115/1.4041336.
  • Sharifuddin, M. S. I., Nordin, S., Ali, A. M., Voice control intelligent wheelchair movement using cnns, 1st International Conference on Artificial Intelligence and Data Sciences, (2019), 40-43.
  • Baiju, P. V., Varghese, K., Alapatt, J. M., Joju, S. J., Sagayam, K. M., Smart wheelchair for physically challenged people, 6th International Conference on Advanced Computing and Communication Systems, (2020), 828-831.
  • Lecrosnier, L., Khemmar, R., Ragot, N., Decoux, B., Rossi, R., Kefi, N., Ertaud, J. Y., Deep learning-based object detection, localization and tracking for smart wheelchair healthcare mobility, Int. J. Environ. Res. Public Health, 18 (1) (2021), 91.
  • Mori, Y., Nagao, K., Automatic generation of multidestination routes for autonomous wheelchairs, J. Robot. Mechatron., 32 (6) (2020), 1121-1136.
  • Leaman, J., La, H.M., The intelligent power wheelchair upgrade kit, 4th IEEE International Conference on Robotic Computing, (2020), 416-421.
  • Kengale, V., Bansod, K., Sure, C., Dalal, M., Bawane, S., Pal, M., Designing of a smart wheelchair for people with disabilities, 3th International Conference on Intelligent Communication Technologies and Virtual Mobile Networks, (2021), 1518-1522.
  • Baltazar, A. R., Petry, M. R., Silva, M. F., Moreira, A. P., Autonomous wheelchair for patient’s transportation on healthcare institutions, Appl. Sci., 3 (3) (2021), 1-13.
  • Cao, W., Yu, H., Wu, X., Li, S., Meng, Q., Chen, C., Development and evaluation of a rehabilitation wheelchair with multiposture transformation and smart control, Complexity, 2021 (1) (2021), 1-14, https://doi.org/10.1155/2021/6628802.
  • Mousa, G., Almaddah, A., Aly, A. A., Design and implementation of wheel chair control system using particle swarm algorithm, Comput. Mater. Continua, 66 (2) (2021), 2005-2023.
  • FPGA Vs microcontroller-which is better for your needs. Available at: https://www.ourpcb.com/fpga-vs-microcontroller.html. [Accessed: March 2021].
  • Ghosh, A., Al Mahmud, S. A., Uday, T. I. R., Farid, D. M., Assistive technology for visually impaired using tensor flow object detection in raspberry pi and coral usb accelerator, IEEE Region 10 Symposium, (2020), 186-189.
  • Coral.ai. Available at: https://coral.ai/docs/accelerator/get-started/. [Accessed: December 2021].
  • Alsing, O., Mobile object detection using tensorflow lite and transfer learning, (2018).
  • Permobil. Available at: https://www.permobil.com/en-us. [Accessed: December 2021].
  • Sunrise Medical. Available at: https://www.sunrisemedical.com/. [Accessed: December 2021].
  • Tobii Dynavox. Available at: https://us.tobiidynavox.com/. [Accessed: December 2021].
  • Gyroset Vigo. Available at: https://nowtech.hu/gyroset-vigo/. [Accessed: December 2021].
  • Belmo. Available at: https://www.belmo.com.tr/. [Accessed: December 2021].
  • Poylin Medikal. Available at: https://poylin.com.tr/. [Accessed: December 2021].
  • Kifas Orthopedic Products. Available at: https://www.kifas.com.tr/. [Accessed: December 2021].
Year 2025, Volume: 67 Issue: 1, 84 - 106
https://doi.org/10.33769/aupse.1536856

Abstract

References

  • Yathunanthan, S., Chandrasena, L., Umakanthan, A., Vasuki, V., Munasinghe, S., Controlling a wheelchair by use of eog signal, 2008 4th International Conference on Information and Automation for Sustainability IEEE, (2008), 283-288, https://doi.org/10.1109/ICIAFS.2008.4783987.
  • Arai, K., Mardiyanto, R., A prototype of electric wheelchair controlled by eye-only for paralyzed user, J. Robot. Mechatron., 23 (1) (2011), 66.
  • Djeha, M., Sbargoud, F., Guiatni, M., Fellah, K., Ababou, N., A combined eeg and eog signals based wheelchair control in virtual environment, IEEE 5th International Conference on Electrical Engineering-Boumerdes, (2017), 1-6, https://doi.org/10.1109/ICEE-B.2017.8192087.
  • Veerati, R., Suresh, E., Chakilam, A., Ravula, S.P., Eye monitoring based motion controlled wheelchair for quadriplegics, Microelectronics, Electromagnetics and Telecommunications, Springer, (2018), 41-49, https://doi.org/10.1007/978-981-10 7329-8_5.
  • Kanani, P., Padole, M., Iot based eye movement guided wheelchair driving control using ad8232 ecg sensor, IJRTE, 8 (4) (2019), 5013-5017.
  • Taylor, P., Nguyen, H., Performance of a head-movement interface for wheelchair control, Proceedings of the IEEE 25th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (IEEE Cat. No. 03CH37439), 2 (2003), 1590-1593, https://doi.org/10.1109/IEMBS.2003.1279669.
  • Nguyen, H., King, L., Knight, G., Real-time head movement system and embedded linux implementation for the control of power wheelchairs, The 26th IEEE Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 2, (2004), 4892-4895, https://doi.org/10.1109/IEMBS.2004.1404353.
  • Craig, D. A., Nguyen, H. T., Wireless real-time head movement system using a personal digital assistant (pda) for control of a power wheelchair, 2005 IEEE Engineering in Medicine and Biology 27th Annual Conference, (2006), 772-775, https://doi.org/10.1109/IEMBS.2005.1616529.
  • Rechy-Ramirez, E. J., Hu, H., McDonald-Maier, K., Head movements-based control of an intelligent wheelchair in an indoor environment, 2012 IEEE International Conference on Robotics and Biomimetics (ROBIO), (2012), 1464-1469, https://doi.org/10.1109/ROBIO.2012.6491175.
  • Pajkanovic, A., Dokic, B., Wheelchair control by head motion, Serb. J. Electr. l Eng., 10 (1) (2013), 135-151, https://doi.org/10.2298/SJEE1301135P.
  • Lee, G., Kim, K., Kim, J., Development of hands-free wheelchair device based on head movement and bio-signal for quadriplegic patients, IJPEM, 17 (3), (2016), 363-369.
  • Suzen, A. A., Deniz, O., Cetin, A., Kafa hareketleri ile kontrol edilebilen tekerlekli sandalye, Mehmet Akif Ersoy Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 8 (Special) (1) (2017), 66-72.
  • Sezer, V., Kafa hareketleriyle kontrol edilebilen yari-otonom elektrikli tekerlekli sandalye gelistirilmesi, Gazi Universitesi Fen Bilimleri Dergisi Part C: Tasarım ve Teknoloji, 6 (1), (2018), 221-232.
  • Gomes, D., Fernandes, F., Castro, E., Pires, G.: Head-movement interface for wheelchair driving based on inertial sensors, 2019 IEEE 6th Portuguese Meeting on Bioengineering, (2019), 1-4, https://doi.org/10.1109/ ENBENG. 2019. 8692475.
  • Tas, M. O., Tas, D. O., Yavuz, H. S., Engelli insanlar icin akilli tekerlekli sandalyenin bas hareketleri ile kontrolünün gercekleştirilmesi, Nicel Bilimler Dergisi, 2 (1) (2020), 19-32.
  • Wakaumi, H., Nakamura, K., Matsumura, T., Development of an automated wheelchair guided by a magnetic ferrite marker lane, J. Rehabil. Res. Dev., 29 (1), 27-34, (1992).
  • Katevas, N. I., Sgouros, N. M., Tzafestas, S. G., Papakonstantinou, G., Beattie, P., Bishop, J. M., Tsanakas, P., Koutsouris, D., The autonomous mobile robot senario: a sensor aided intelligent navigation system for powered wheelchairs, IEEE Robot. Autom. Mag., 4 (4) (1997), 60-70.
  • Iwase, T., Zhang, R., Kuno, Y., Robotic wheelchair moving with the caregiver, SICE-ICASE International Joint Conference - IEEE, (2006), 238-243, https://doi.org/ 10.1109/SICE.2006.315614.
  • Ferreira, A., Silva, R., Celeste, W., Bastos Filho, T., Sarcinelli Filho, M., Human- machine interface based on muscular and brain signals applied to a robotic wheelchair, Journal of Physics: Conference Series, IOP Publishing, 90 (2007), 012094, https://doi.org/10.1088/1742-6596/90/1/012094.
  • Bostelman, R., Albus, J., A multipurpose robotic wheelchair and rehabilitation device for the home, IEEE/RSJ International Conference on Intelligent Robots and Systems, (2007), 3348-3353, https://doi.org/10.1109/IROS.2007.4398980.
  • Reis, L. P., Braga, R. A., Sousa, M., Moreira, A. P., Intellwheels mmi: A flexible interface for an intelligent wheelchair, Robot Soccer World Cup, Springer, (2009), 296-307.
  • Cheein, F. A. A., De La Cruz, C., Bastos, T. F., Carelli, R., Slam-based cross-a-door solution approach for a robotic wheelchair, Int. J. Adv. Robot. Syst., 6 (3) (2009), 20, https://doi.org/10.5772/72.
  • Kinpara, Y., Takano, E., Kobayashi, Y., Kuno, Y., Situation-driven control of a robotic wheelchair to follow a caregiver, 17th IEEE Korea-Japan Joint Workshop on Frontiers of Computer Vision (FCV), (2011), 1-6, https://doi.org/10.1109/FCV.2011.5739720.
  • Tomari, M.R.M., Kobayashi, Y., Kuno, Y., Development of smart wheelchair system for a user with severe motor impairment, Procedia Eng., 41, (2012), 538-546, https://doi.org/10.1016/j.proeng.2012.07.209.
  • Mori, Y., Sakai, N., Katsumura, K., Development of a wheelchair with a lifting function, Adv. Mech. Eng., 4 (1) (2012), 803014, https://doi.org/10.1155/2012/803014.
  • Lopes, A. C., Pires, G., Nunes, U., Assisted navigation for a brain-actuated intelligent wheelchair, Robot. Auton. Syst., 61 (3) (2013), 245-258, https://doi.org/10.1016/j.robot.2012.11.002.
  • Kamaraj, D. C., Dicianno, B. E., Cooper, R. A., A participatory approach to develop the power mobility screening tool and the power mobility clinical driving assessment tool, Biomed Res. Int., 2014 (3) (2014), 541614, https://doi.org/10.1155/2014/541614.
  • Giesbrecht, E. M., Miller, W. C., Mitchell, I. M., Woodgate, R. L., Development of a wheelchair skills home program for older adults using a participatory action design approach, Biomed Res. Int., 2014 (172434) (2014), 1-13, https://doi.org/10.1155/2014/172434.
  • Grindle, G. G., Wang, H., Jeannis, H., Teodorski, E., Cooper, R. A., Design and user evaluation of a wheelchair mounted robotic assisted transfer device, Biomed Res. Int., 2015 (2015), 1-9, https://doi.org/10.1155/2015/752930.
  • Grindle, G. G., Wang, H., Jeannis, H., Teodorski, E., Cooper, R. A., Design and user evaluation of a wheelchair mounted robotic assisted transfer device, Biomed Res. Int., 2015 (2015), 1-9, https://doi.org/10.1155/2015/752930.
  • Bingol, O., Aydogan O., Ozkaya, B., Sen, N., Android cihaz ile tekerlekli sandalye kontrolü, Afyon Kocatepe Universitesi Fen ve Muhendislik Bilimleri Dergisi, 2016 (2016), 164‐169.
  • Jamin, N. F., Ghani, N. A., Two-wheeled wheelchair stabilization control using fuzzy logic controller-based particle swarm optimization, IEEE International Conference on Automatic Control and Intelligent Systems (I2CACIS), (2016), 180- 185, https://doi.org/10.1109/I2CACIS.2016.7885311.
  • Hari Krishnan, R., Pugazhenthi, S., Design and development of a wheel chair based manual self-transfer device for elderly and disabled, J. Med. Devices, 10 (2) (2016), 024501.
  • Schwesinger, D., Shariati, A., Montella, C., Spletzer, J., A smart wheelchair ecosystem for autonomous navigation in urban environments, Auton. Robots, 41 (3) (2017), 519-538, https://doi.org/10.1007/s10514-016-9549-1.
  • Kundu, A. S., Mazumder, O., Lenka, P. K., Bhaumik, S., Design and performance evaluation of 4 wheeled omni wheelchair with reduced slip and vibration, Procedia Comput. Sci., 105 (2017), 289-295, https://doi.org/10.1016/j.procs.2017.01.224.
  • Ruzaij, M. F., Neubert, S., Stoll, N., Thurow, K., Design and implementation of low- cost intelligent wheelchair controller for quadriplegias and paralysis patient, IEEE 15th International Symposium on Applied Machine Intelligence and Informatics, (2017), 399-404, https://doi.org/10.1109/SAMI.2017.7880342.
  • Devigne, L., Pasteau, F., Babel, M., Narayanan, V. K., Guegan, S., Gallien, P., Design of a haptic guidance solution for assisted power wheelchair navigation, IEEE International Conference on Systems, Man, and Cybernetics (SMC), (2018), 3231-3236, https://doi.org/10.1109/SMC.2018.00547.
  • Rabhi, Y., Mrabet, M., Fnaiech, F.: A facial expression-controlled wheelchair for people with disabilities, Comput. Methods Programs Biomed. Update, 165, (2018), 89-105, https://doi.org/10.1016/j.cmpb.2018.08.013.
  • Kaur, G., Srivastava, M., Kumar, A., Integrated speaker and speech recognition for wheelchair movement using artificial intelligence, Informatica, 42 (4), (2018).
  • Tang, J., Liu, Y., Hu, D., Zhou, Z., Towards bci-actuated smart wheelchair system, Biomed. Eng. Online, 17 (1) (2018), 1-22.
  • Hartman, A., Nandikolla, V. K., Human-machine interface for a smart wheelchair, Journal of Robotics, 2019 (3) (2019), 1-11.
  • Apu, M. A. R., Fahad, I., Fattah, S., Shahnaz, C., Eye blink controlled low cost smart wheel chair aiding disabled people, IEEE R10 Humanitarian Technology Conference, 47129 (2019), 99-103, https://doi.org/10.1109/R10- HTC47129.2019.9042446.
  • Al-Wesabi, F. N., Alamgeer, M., Al-Yarimi, F., Albaadani, A., A smart-hand movement-based system to control a wheelchair wirelessly, Sens. Mater., 31 (9) (2019), 2947-2964.
  • Chuy, O.Y., Herrero, J., Al-Selwadi, A., Mooers, A., Control and evaluation of a motorized attendant wheelchair with haptic interface, J. Med. Devices, 13 (1) (2019), https://doi.org/10.1115/1.4041336.
  • Sharifuddin, M. S. I., Nordin, S., Ali, A. M., Voice control intelligent wheelchair movement using cnns, 1st International Conference on Artificial Intelligence and Data Sciences, (2019), 40-43.
  • Baiju, P. V., Varghese, K., Alapatt, J. M., Joju, S. J., Sagayam, K. M., Smart wheelchair for physically challenged people, 6th International Conference on Advanced Computing and Communication Systems, (2020), 828-831.
  • Lecrosnier, L., Khemmar, R., Ragot, N., Decoux, B., Rossi, R., Kefi, N., Ertaud, J. Y., Deep learning-based object detection, localization and tracking for smart wheelchair healthcare mobility, Int. J. Environ. Res. Public Health, 18 (1) (2021), 91.
  • Mori, Y., Nagao, K., Automatic generation of multidestination routes for autonomous wheelchairs, J. Robot. Mechatron., 32 (6) (2020), 1121-1136.
  • Leaman, J., La, H.M., The intelligent power wheelchair upgrade kit, 4th IEEE International Conference on Robotic Computing, (2020), 416-421.
  • Kengale, V., Bansod, K., Sure, C., Dalal, M., Bawane, S., Pal, M., Designing of a smart wheelchair for people with disabilities, 3th International Conference on Intelligent Communication Technologies and Virtual Mobile Networks, (2021), 1518-1522.
  • Baltazar, A. R., Petry, M. R., Silva, M. F., Moreira, A. P., Autonomous wheelchair for patient’s transportation on healthcare institutions, Appl. Sci., 3 (3) (2021), 1-13.
  • Cao, W., Yu, H., Wu, X., Li, S., Meng, Q., Chen, C., Development and evaluation of a rehabilitation wheelchair with multiposture transformation and smart control, Complexity, 2021 (1) (2021), 1-14, https://doi.org/10.1155/2021/6628802.
  • Mousa, G., Almaddah, A., Aly, A. A., Design and implementation of wheel chair control system using particle swarm algorithm, Comput. Mater. Continua, 66 (2) (2021), 2005-2023.
  • FPGA Vs microcontroller-which is better for your needs. Available at: https://www.ourpcb.com/fpga-vs-microcontroller.html. [Accessed: March 2021].
  • Ghosh, A., Al Mahmud, S. A., Uday, T. I. R., Farid, D. M., Assistive technology for visually impaired using tensor flow object detection in raspberry pi and coral usb accelerator, IEEE Region 10 Symposium, (2020), 186-189.
  • Coral.ai. Available at: https://coral.ai/docs/accelerator/get-started/. [Accessed: December 2021].
  • Alsing, O., Mobile object detection using tensorflow lite and transfer learning, (2018).
  • Permobil. Available at: https://www.permobil.com/en-us. [Accessed: December 2021].
  • Sunrise Medical. Available at: https://www.sunrisemedical.com/. [Accessed: December 2021].
  • Tobii Dynavox. Available at: https://us.tobiidynavox.com/. [Accessed: December 2021].
  • Gyroset Vigo. Available at: https://nowtech.hu/gyroset-vigo/. [Accessed: December 2021].
  • Belmo. Available at: https://www.belmo.com.tr/. [Accessed: December 2021].
  • Poylin Medikal. Available at: https://poylin.com.tr/. [Accessed: December 2021].
  • Kifas Orthopedic Products. Available at: https://www.kifas.com.tr/. [Accessed: December 2021].
There are 64 citations in total.

Details

Primary Language English
Subjects Biomedical Sciences and Technology
Journal Section Review Articles
Authors

Onur Koçak 0000-0002-8240-4046

Ömürhan Soysal 0000-0001-8431-5867

Buse Çamlıca 0000-0002-2825-4286

Cansel Fıçıcı 0000-0002-3698-6137

Mehmet Serdar Güzel 0000-0002-3408-0083

Publication Date
Submission Date August 21, 2024
Acceptance Date November 7, 2024
Published in Issue Year 2025 Volume: 67 Issue: 1

Cite

APA Koçak, O., Soysal, Ö., Çamlıca, B., Fıçıcı, C., et al. (n.d.). Comprehensive review of smart wheelchairs for quadriplegic patients. Communications Faculty of Sciences University of Ankara Series A2-A3 Physical Sciences and Engineering, 67(1), 84-106. https://doi.org/10.33769/aupse.1536856
AMA Koçak O, Soysal Ö, Çamlıca B, Fıçıcı C, Güzel MS. Comprehensive review of smart wheelchairs for quadriplegic patients. Commun.Fac.Sci.Univ.Ank.Series A2-A3: Phys.Sci. and Eng. 67(1):84-106. doi:10.33769/aupse.1536856
Chicago Koçak, Onur, Ömürhan Soysal, Buse Çamlıca, Cansel Fıçıcı, and Mehmet Serdar Güzel. “Comprehensive Review of Smart Wheelchairs for Quadriplegic Patients”. Communications Faculty of Sciences University of Ankara Series A2-A3 Physical Sciences and Engineering 67, no. 1 n.d.: 84-106. https://doi.org/10.33769/aupse.1536856.
EndNote Koçak O, Soysal Ö, Çamlıca B, Fıçıcı C, Güzel MS Comprehensive review of smart wheelchairs for quadriplegic patients. Communications Faculty of Sciences University of Ankara Series A2-A3 Physical Sciences and Engineering 67 1 84–106.
IEEE O. Koçak, Ö. Soysal, B. Çamlıca, C. Fıçıcı, and M. S. Güzel, “Comprehensive review of smart wheelchairs for quadriplegic patients”, Commun.Fac.Sci.Univ.Ank.Series A2-A3: Phys.Sci. and Eng., vol. 67, no. 1, pp. 84–106, doi: 10.33769/aupse.1536856.
ISNAD Koçak, Onur et al. “Comprehensive Review of Smart Wheelchairs for Quadriplegic Patients”. Communications Faculty of Sciences University of Ankara Series A2-A3 Physical Sciences and Engineering 67/1 (n.d.), 84-106. https://doi.org/10.33769/aupse.1536856.
JAMA Koçak O, Soysal Ö, Çamlıca B, Fıçıcı C, Güzel MS. Comprehensive review of smart wheelchairs for quadriplegic patients. Commun.Fac.Sci.Univ.Ank.Series A2-A3: Phys.Sci. and Eng.;67:84–106.
MLA Koçak, Onur et al. “Comprehensive Review of Smart Wheelchairs for Quadriplegic Patients”. Communications Faculty of Sciences University of Ankara Series A2-A3 Physical Sciences and Engineering, vol. 67, no. 1, pp. 84-106, doi:10.33769/aupse.1536856.
Vancouver Koçak O, Soysal Ö, Çamlıca B, Fıçıcı C, Güzel MS. Comprehensive review of smart wheelchairs for quadriplegic patients. Commun.Fac.Sci.Univ.Ank.Series A2-A3: Phys.Sci. and Eng. 67(1):84-106.

Communications Faculty of Sciences University of Ankara Series A2-A3 Physical Sciences and Engineering

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.