Research Article
BibTex RIS Cite

Bridging Statistical Rigor and Clinical Usability: The CORMeta App for Meta-Analysis of Correlated Outcomes

Year 2025, Volume: 78 Issue: 4, 338 - 347, 31.12.2025
https://doi.org/10.65092/autfm.1758848

Abstract

Background: In clinical research, multiple outcomes are often measured within the same cohort, leading to statistical dependencies that violate assumptions of traditional meta-analytic methods. While advanced models can accommodate such correlations, they typically require programming expertise, limiting accessibility for many physician-researchers.
Objective: We present a user-friendly, interactive Shiny web application designed to perform meta-analyses of correlated outcomes, with particular relevance for cohort-based clinical datasets.
Methods: The application implements a modified multivariate meta-analytic framework that accounts for the correlation structure of outcomes within cohorts. Users can upload their data, define correlation matrices, and filter observations by any variable (e.g., age, domain, exposure) without writing code. The application provides graphical output (forest plots) along with estimates of overall effect size, heterogeneity (τ²), and p-values.
Results: A demonstration dataset on prenatal alcohol exposure and neurodevelopmental outcomes is simulated to illustrate the application’s functionality. The application automatically generates correlation matrices where needed, adjusts for intra-cohort dependencies, and produces interpretable results suitable for clinical research reports.
Conclusion: This open-access application bridges the gap between complex statistical modeling and clinical usability. It enables physicians to conduct robust meta-analyses of correlated outcomes with ease, supporting evidence-based practice and local research initiatives. The tool is particularly valuable in multi-domain or multi-cohort studies where outcome correlation is non-negligible.

Thanks

The author would like to express their sincere gratitude to Joseph L. Jacobson, and Sandra W. Jacobson for their valuable contributions to the conceptualization of this work. The idea for the CORMeta application originated from a project in which they served as Principal Investigators. Their insightful feedback on the functionality and usability of the tool greatly informed its development.

References

  • Jackson D, Riley R, White IR. Multivariate meta-analysis: potential and promise. Stat Med. 2011;30(20):2481-98.
  • Cheung MWL. A guide to conducting a meta-analysis with non-independent effect sizes. Neuropsychol Rev. 2019;29(3):387-96.
  • Hedges LV, Tipton E, Johnson MC. Robust variance estimation in meta-regression with dependent effect size estimates. Res Synth Methods. 2010;1(1):39-65.
  • Van den Noortgate W, López-López JA, Marín-Martínez F, et al. Three-level meta-analysis of dependent effect sizes. Behav Res Methods. 2013;45(2):576-94.
  • Hocagil TA, Ryan LM, Cook RJ, et al. A hierarchical meta-analysis for settings involving multiple outcomes across multiple cohorts. Stat (Int Stat Inst). 2022;11(1):e462.
  • Riley RD, Thompson JR, Abrams KR. An alternative model for bivariate random-effects meta-analysis when the within-study correlations are unknown. Biostatistics. 2008;9(1):172-86.
  • Daniels MJ, Hughes MD. Meta-analysis for the evaluation of potential surrogate markers. Stat Med. 1997;16(17):1965-82.
  • Riley RD, Abrams KR, Lambert PC, et al. An evaluation of bivariate random-effects meta-analysis for the joint synthesis of two correlated outcomes. Stat Med. 2007;26(1):78-97.
  • Langan D, Higgins JP, Jackson D, et al. A comparison of heterogeneity variance estimators in simulated random-effects meta-analyses. Res Synth Methods. 2019;10(1):83-98.
  • Viechtbauer W. Conducting meta-analyses in R with the metafor package. J Stat Softw. 2010;36(3):1-48.
  • Gleser LJ, Olkin I. Stochastically dependent effect sizes. In: Cooper H, Hedges LV, Valentine JC, editors. The handbook of research synthesis and meta-analysis. 2nd ed. New York: Russell Sage Foundation; 2009. p.357-76.
  • Riley RD, Price MJ, Jackson D, et al. Multivariate meta-analysis using individual participant data. Res Synth Methods. 2015;6(2):157-74.

Klinik Uygulamalarda CORMeta Meta-Analiz Uygulaması

Year 2025, Volume: 78 Issue: 4, 338 - 347, 31.12.2025
https://doi.org/10.65092/autfm.1758848

Abstract

Arka Plan: Klinik araştırmalarda, aynı kohort içinde birden fazla sonuç ölçütü değerlendirilmekte olup bu durum, geleneksel meta-analiz yöntemlerinin varsayımlarını ihlal eden istatistiksel bağımlılıklara yol açmaktadır. Bu tür korelasyonları dikkate alabilen gelişmiş modeller mevcut olmakla birlikte, bu modellerin kullanımı genellikle programlama bilgisi gerektirdiğinden, birçok hekim araştırmacı için erişilebilir değildir.
Amaç: Kohort tabanlı klinik veri setleriyle ilişkili korele sonuçlar üzerinde meta-analiz yapabilmeyi kolaylaştırmak amacıyla, kullanıcı dostu ve etkileşimli bir Shiny web uygulaması sunmaktayız.
Yöntemler: Bu uygulama, kohort içi sonuçların korelasyon yapısını dikkate alan, uyarlanmış bir çok değişkenli meta-analiz çerçevesini uygulamaktadır. Kullanıcılar veri yükleyebilir, korelasyon matrislerini tanımlayabilir ve herhangi bir değişkene (örneğin yaş, alan, maruziyet) göre gözlemleri filtreleyebilir; tüm bunlar kod yazmadan gerçekleştirilebilmektedir. Uygulama, grafiksel çıktılar (orman grafikleri) ile birlikte genel etki büyüklüğü, heterojenite (τ²) ve p-değerleri gibi sonuçları sunmaktadır.
Bulgular: Uygulamanın işlevselliğini göstermek amacıyla, doğum öncesi alkol maruziyeti ve nörogelişimsel sonuçlara ilişkin simüle edilmiş bir veri seti kullanılmıştır. Uygulama, gerekli durumlarda korelasyon matrislerini otomatik olarak oluşturur, kohort içi bağımlılıkları dikkate alır ve klinik araştırma raporlarına uygun, yorumlanabilir sonuçlar üretir.
Sonuç: Bu açık erişimli uygulama, karmaşık istatistiksel modelleme ile klinik uygulanabilirlik arasındaki boşluğu kapatmaktadır. Hekimlerin, korele sonuçlar üzerinde sağlam meta-analizler yapabilmesini kolaylaştırarak kanıta dayalı uygulamaları ve yerel araştırma girişimlerini desteklemektedir. Araç, özellikle çok alanlı veya çok kohortlu çalışmalarda, sonuçlar arasındaki korelasyonun göz ardı edilemeyecek düzeyde olduğu durumlarda büyük değer taşımaktadır.

References

  • Jackson D, Riley R, White IR. Multivariate meta-analysis: potential and promise. Stat Med. 2011;30(20):2481-98.
  • Cheung MWL. A guide to conducting a meta-analysis with non-independent effect sizes. Neuropsychol Rev. 2019;29(3):387-96.
  • Hedges LV, Tipton E, Johnson MC. Robust variance estimation in meta-regression with dependent effect size estimates. Res Synth Methods. 2010;1(1):39-65.
  • Van den Noortgate W, López-López JA, Marín-Martínez F, et al. Three-level meta-analysis of dependent effect sizes. Behav Res Methods. 2013;45(2):576-94.
  • Hocagil TA, Ryan LM, Cook RJ, et al. A hierarchical meta-analysis for settings involving multiple outcomes across multiple cohorts. Stat (Int Stat Inst). 2022;11(1):e462.
  • Riley RD, Thompson JR, Abrams KR. An alternative model for bivariate random-effects meta-analysis when the within-study correlations are unknown. Biostatistics. 2008;9(1):172-86.
  • Daniels MJ, Hughes MD. Meta-analysis for the evaluation of potential surrogate markers. Stat Med. 1997;16(17):1965-82.
  • Riley RD, Abrams KR, Lambert PC, et al. An evaluation of bivariate random-effects meta-analysis for the joint synthesis of two correlated outcomes. Stat Med. 2007;26(1):78-97.
  • Langan D, Higgins JP, Jackson D, et al. A comparison of heterogeneity variance estimators in simulated random-effects meta-analyses. Res Synth Methods. 2019;10(1):83-98.
  • Viechtbauer W. Conducting meta-analyses in R with the metafor package. J Stat Softw. 2010;36(3):1-48.
  • Gleser LJ, Olkin I. Stochastically dependent effect sizes. In: Cooper H, Hedges LV, Valentine JC, editors. The handbook of research synthesis and meta-analysis. 2nd ed. New York: Russell Sage Foundation; 2009. p.357-76.
  • Riley RD, Price MJ, Jackson D, et al. Multivariate meta-analysis using individual participant data. Res Synth Methods. 2015;6(2):157-74.
There are 12 citations in total.

Details

Primary Language English
Subjects Epidemiological Methods
Journal Section Research Article
Authors

Tugba Akkaya Hocagil 0000-0003-3603-4491

Richard J Cook This is me

Louise M Ryan This is me

Submission Date August 5, 2025
Acceptance Date September 29, 2025
Publication Date December 31, 2025
Published in Issue Year 2025 Volume: 78 Issue: 4

Cite

APA Akkaya Hocagil, T., Cook, R. J., & Ryan, L. M. (2025). Bridging Statistical Rigor and Clinical Usability: The CORMeta App for Meta-Analysis of Correlated Outcomes. Ankara Üniversitesi Tıp Fakültesi Mecmuası, 78(4), 338-347. https://doi.org/10.65092/autfm.1758848
AMA 1.Akkaya Hocagil T, Cook RJ, Ryan LM. Bridging Statistical Rigor and Clinical Usability: The CORMeta App for Meta-Analysis of Correlated Outcomes. Ankara Üniversitesi Tıp Fakültesi Mecmuası. 2025;78(4):338-347. doi:10.65092/autfm.1758848
Chicago Akkaya Hocagil, Tugba, Richard J Cook, and Louise M Ryan. 2025. “Bridging Statistical Rigor and Clinical Usability: The CORMeta App for Meta-Analysis of Correlated Outcomes”. Ankara Üniversitesi Tıp Fakültesi Mecmuası 78 (4): 338-47. https://doi.org/10.65092/autfm.1758848.
EndNote Akkaya Hocagil T, Cook RJ, Ryan LM (December 1, 2025) Bridging Statistical Rigor and Clinical Usability: The CORMeta App for Meta-Analysis of Correlated Outcomes. Ankara Üniversitesi Tıp Fakültesi Mecmuası 78 4 338–347.
IEEE [1]T. Akkaya Hocagil, R. J. Cook, and L. M. Ryan, “Bridging Statistical Rigor and Clinical Usability: The CORMeta App for Meta-Analysis of Correlated Outcomes”, Ankara Üniversitesi Tıp Fakültesi Mecmuası, vol. 78, no. 4, pp. 338–347, Dec. 2025, doi: 10.65092/autfm.1758848.
ISNAD Akkaya Hocagil, Tugba - Cook, Richard J - Ryan, Louise M. “Bridging Statistical Rigor and Clinical Usability: The CORMeta App for Meta-Analysis of Correlated Outcomes”. Ankara Üniversitesi Tıp Fakültesi Mecmuası 78/4 (December 1, 2025): 338-347. https://doi.org/10.65092/autfm.1758848.
JAMA 1.Akkaya Hocagil T, Cook RJ, Ryan LM. Bridging Statistical Rigor and Clinical Usability: The CORMeta App for Meta-Analysis of Correlated Outcomes. Ankara Üniversitesi Tıp Fakültesi Mecmuası. 2025;78:338–347.
MLA Akkaya Hocagil, Tugba, et al. “Bridging Statistical Rigor and Clinical Usability: The CORMeta App for Meta-Analysis of Correlated Outcomes”. Ankara Üniversitesi Tıp Fakültesi Mecmuası, vol. 78, no. 4, Dec. 2025, pp. 338-47, doi:10.65092/autfm.1758848.
Vancouver 1.Akkaya Hocagil T, Cook RJ, Ryan LM. Bridging Statistical Rigor and Clinical Usability: The CORMeta App for Meta-Analysis of Correlated Outcomes. Ankara Üniversitesi Tıp Fakültesi Mecmuası [Internet]. 2025 Dec. 1;78(4):338-47. Available from: https://izlik.org/JA43XF49TT