BibTex RIS Cite

Effect Of NaOH Concentration On The Degradation Properties Of CHA/PCL Composites For Bone Replacement Applications

Year 2013, , 1 - 5, 01.01.2013
https://doi.org/10.1501/Tipfak_0000000833

Abstract

Aim: To study the effect of NaOH concentration and duration of treatment on the % mass loss of 19 wt% uncalcined carbonated hydroxyapatite (CHA)/Poly-ε -caprolactone (PCL)

References

  • Aho, Heikkila. Clinical Applications of Bone Allografts and Substitutes. Phillips GO, editor. Singapore: World Scientific Publishing Co. Ptc. Ltd.; 2005.
  • Hench LL, Paschall HA. Direct chemical bond of bioactive glass- ceramic materials to bone and muscle. Journal of Biomedical Materials Research. 1973;7:25-42.
  • Tiaw KS, Goh SW, Hong M, Wang Z, Lan B, Teoh SH. Laser surface modification of poly(epsilon- caprolactone) (PCL) membrane for tissue engineering applications. Biomaterials. 2005;26:763-769.
  • Chouzouri G, Xanthos M. Degradation of aliphatic polyesters in the presence of inorganic fillers. Journal of Plastic Film & Sheeting. 2007;23:19-36.
  • Chen DR, Bei JZ, Wang SG. Polycaprolactone microparticles and their biodegradation. Polymer Degradation and Stability. 2000;67:455- 459.
  • Lowry KJ, Hamson KR, Bear L, Peng YB, Calaluce R, Evans ML, et al. Polycaprolactone/glass bioabsorbable implant in a rabbit humerus fracture model. Journal of Biomedical Materials Research. 1997;36:536-41.
  • Chouzouri G, Xanthos M. In vitro bioactivity and degradation of polycaprolactone composites containing silicate fillers. Acta Biomaterialia. 2007;3:745-756.
  • Labet M, Thielemans W. Synthesis of polycaprolactone: a review. Chemical Society Reviews. 2009;38:3484-3504.
  • Yeo A, Sju E, Rai B, Teoh SH. Customizing the Degradation and Load-Bearing Profile of 3D Polycaprolactone-Tricalcium
  • Phosphate Scaffolds Under Enzymatic and Hydrolytic Conditions. Journal of Biomedical Materials Research Part B- Applied Biomaterials. 2008;87B:562- 569.
  • Lam CXF, Savalani MM, Teoh SH, Hutmacher DW. Dynamics of in vitro polymer degradation of polycaprolactone-based scaffolds: accelerated versus simulated physiological conditions. Biomedical Materials. 2008;3(3).
  • beta-tricalcium phosphate and poly (L
  • lactide-co-glycolide-epsilon
  • Ang KC, Leong KF, Chua CK, al. Development of guided bone Chandrasekaran M. Compressive properties and degradability of poly(epsilon- caprolatone)/hydroxyapatite composites under accelerated hydrolytic degradation. Journal of Biomedical Materials Research Part A. 2007;80A:655-660.
  • Rich J, Jaakkola T, Tirri T, Narhi T,
  • Tsuji H, Ishida T. Poly(L-lactide). X. Enhanced surface hydrophilicity and chain-scission mechanisms of poly(L- lactide) film in enzymatic, alkaline, and phosphate-buffered solutions. Journal of Applied Polymer Science. 2003;87:1628-1633.
  • Yeo A, Wong WJ, Khoo HH, Teoh SH. Surface modification of PCL-TCP scaffolds improve interfacial mechanical interlock and enhance early bone formation: An in vitro and in vivo characterization. Journal of Biomedical Materials Research Part A. 2010;92A:311-321.
  • Htay M. Water vapour transmission AB-type carbonate-substituted hydroxyapatite. Journal of Biomedical and degradation properties of biaxiallt stretched PCL films and cell-permeable membranes 2004.
  • Azevedo MC, Reis RL, Claase BM, Grijpma DW, Feijen J. Development and properties of polycaprolactone/hydroxyapatite composite biomaterials. Journal of Materials Science-Materials in Medicine. 2003;14:103-107.
  • Tsuji H, Suzuyoshi K, Tezuka Y, Ishida T. Environmental degradation of biodegradable polyesters: 3. Effects of alkali treatment on biodegradation of poly(epsilon-caprolactone) and poly (R)-3-hydroxybutyrate films in controlled soil. Journal of Polymers and the Environment. 2003;11:57-65.
  • Kikuchi M, Koyama Y, Yamada T, caprolactone) composites. Biomaterials. 2004;25:5979-5986. Yli-Urpo A, Seppala J. In vitro evaluation of poly(epsilon- caprolactone-co-DL-lactide)/bioactive glass composites. Biomaterials. 2002;23:2143-2150.
  • Rai B, Ho KH, Lei Y, Si-Hoe KM, Teo CMJ, bin Yacob K, et al. Polycaprolactone-20% tricalcium phosphate scaffolds in combination with platelet-rich plasma for the treatment of critical-sized defects of the mandible: A pilot study. Journal of Oral and Maxillofacial Surgery. 2007;65:2195-2205. Materials Research. 2002;59:697-708.
  • Wilberforce SIJ, Finlayson CE, Best SM, Cameron RE. The influence of the compounding process and testing conditions on the compressive mechanical properties of poly(D,L- lactide-co-glycolide)/alpha-tricalcium phosphate nanocomposites. Journal of the Mechanical Behavior of Biomedical Materials. 2011;4:1081-1089.

NaOH Konsantrasyonunun ve NaOH Bekletme Süresinin Kemik Greftlerinde Kullanılan CHA/PCL Kompozitlerinin Biyolojik Yıkımına Etkisi

Year 2013, , 1 - 5, 01.01.2013
https://doi.org/10.1501/Tipfak_0000000833

Abstract

Amaç: NaOH konsantrasyonu ve bekletme süresinin ağırlıkça % 19 kalsine edilmemiș
karbonlanmıș hidroksiapatit (CHA)/Poly- ε -kaprolakton (PCL)’nin kütle kaybına etkisinin
incelenmesi
NaOH uygulamasının ardından gerçekleștiren fosfatla tamponlanmıș salin (PBS) çalıșmasında,
kompozitlerin biyolojik yıkımlarının analizi ve kemik grefti uygulanabilirliklerinin incelenmesi
Gereç ve Yöntemler: CHA ıslak çökeltme yöntemi kullanılarak üretilmiștir. CHA/PCL kompozit,
ikiz vidalı ekstrüzyon ve enjeksiyon kalıplama ile hazırlanmıștır. Ağırlıkça % 19 kalsine
edilmemiș CHA/PCL’in biyolojik yıkım hızını arttırmak amacıyla, numuneler farklı sürelerde,
çeșitli konsantrasyonlardaki NaOH solüsyonları (Sigma Aldrich, UK) ile muamele edilmiștir.
Daha sonra biyolojik yıkım hızları PBS içinde analiz edilmiștir.
Bulgular: NaOH konsantrasyonunun 3 M‘dan 5 M’a artması, NaOH ve PBS’de muhafaza
edildikten sonra numunelerin % ağırlık kaybını arttırmıștır. Ancak, 5 M NaOH’da numuneleri 1
ve 3 gün bulundurmak % ağırlık değișimini etkilememiștir.
Sonuç: NaOH konsantrasyonunun artması ile numunelerin biyolojik yıkımları hızlandırılmıștır.
Ağırlıkça % 19 kalsine edilmemiș CHA/PCL’in 1 gün sureyle 3 M NaOH içinde muhafaza
edilmesi, PBS çalıșmalarında daha kontrollü bir șekilde biyolojik yıkıma uğradıklarını
göstermiștir.

References

  • Aho, Heikkila. Clinical Applications of Bone Allografts and Substitutes. Phillips GO, editor. Singapore: World Scientific Publishing Co. Ptc. Ltd.; 2005.
  • Hench LL, Paschall HA. Direct chemical bond of bioactive glass- ceramic materials to bone and muscle. Journal of Biomedical Materials Research. 1973;7:25-42.
  • Tiaw KS, Goh SW, Hong M, Wang Z, Lan B, Teoh SH. Laser surface modification of poly(epsilon- caprolactone) (PCL) membrane for tissue engineering applications. Biomaterials. 2005;26:763-769.
  • Chouzouri G, Xanthos M. Degradation of aliphatic polyesters in the presence of inorganic fillers. Journal of Plastic Film & Sheeting. 2007;23:19-36.
  • Chen DR, Bei JZ, Wang SG. Polycaprolactone microparticles and their biodegradation. Polymer Degradation and Stability. 2000;67:455- 459.
  • Lowry KJ, Hamson KR, Bear L, Peng YB, Calaluce R, Evans ML, et al. Polycaprolactone/glass bioabsorbable implant in a rabbit humerus fracture model. Journal of Biomedical Materials Research. 1997;36:536-41.
  • Chouzouri G, Xanthos M. In vitro bioactivity and degradation of polycaprolactone composites containing silicate fillers. Acta Biomaterialia. 2007;3:745-756.
  • Labet M, Thielemans W. Synthesis of polycaprolactone: a review. Chemical Society Reviews. 2009;38:3484-3504.
  • Yeo A, Sju E, Rai B, Teoh SH. Customizing the Degradation and Load-Bearing Profile of 3D Polycaprolactone-Tricalcium
  • Phosphate Scaffolds Under Enzymatic and Hydrolytic Conditions. Journal of Biomedical Materials Research Part B- Applied Biomaterials. 2008;87B:562- 569.
  • Lam CXF, Savalani MM, Teoh SH, Hutmacher DW. Dynamics of in vitro polymer degradation of polycaprolactone-based scaffolds: accelerated versus simulated physiological conditions. Biomedical Materials. 2008;3(3).
  • beta-tricalcium phosphate and poly (L
  • lactide-co-glycolide-epsilon
  • Ang KC, Leong KF, Chua CK, al. Development of guided bone Chandrasekaran M. Compressive properties and degradability of poly(epsilon- caprolatone)/hydroxyapatite composites under accelerated hydrolytic degradation. Journal of Biomedical Materials Research Part A. 2007;80A:655-660.
  • Rich J, Jaakkola T, Tirri T, Narhi T,
  • Tsuji H, Ishida T. Poly(L-lactide). X. Enhanced surface hydrophilicity and chain-scission mechanisms of poly(L- lactide) film in enzymatic, alkaline, and phosphate-buffered solutions. Journal of Applied Polymer Science. 2003;87:1628-1633.
  • Yeo A, Wong WJ, Khoo HH, Teoh SH. Surface modification of PCL-TCP scaffolds improve interfacial mechanical interlock and enhance early bone formation: An in vitro and in vivo characterization. Journal of Biomedical Materials Research Part A. 2010;92A:311-321.
  • Htay M. Water vapour transmission AB-type carbonate-substituted hydroxyapatite. Journal of Biomedical and degradation properties of biaxiallt stretched PCL films and cell-permeable membranes 2004.
  • Azevedo MC, Reis RL, Claase BM, Grijpma DW, Feijen J. Development and properties of polycaprolactone/hydroxyapatite composite biomaterials. Journal of Materials Science-Materials in Medicine. 2003;14:103-107.
  • Tsuji H, Suzuyoshi K, Tezuka Y, Ishida T. Environmental degradation of biodegradable polyesters: 3. Effects of alkali treatment on biodegradation of poly(epsilon-caprolactone) and poly (R)-3-hydroxybutyrate films in controlled soil. Journal of Polymers and the Environment. 2003;11:57-65.
  • Kikuchi M, Koyama Y, Yamada T, caprolactone) composites. Biomaterials. 2004;25:5979-5986. Yli-Urpo A, Seppala J. In vitro evaluation of poly(epsilon- caprolactone-co-DL-lactide)/bioactive glass composites. Biomaterials. 2002;23:2143-2150.
  • Rai B, Ho KH, Lei Y, Si-Hoe KM, Teo CMJ, bin Yacob K, et al. Polycaprolactone-20% tricalcium phosphate scaffolds in combination with platelet-rich plasma for the treatment of critical-sized defects of the mandible: A pilot study. Journal of Oral and Maxillofacial Surgery. 2007;65:2195-2205. Materials Research. 2002;59:697-708.
  • Wilberforce SIJ, Finlayson CE, Best SM, Cameron RE. The influence of the compounding process and testing conditions on the compressive mechanical properties of poly(D,L- lactide-co-glycolide)/alpha-tricalcium phosphate nanocomposites. Journal of the Mechanical Behavior of Biomedical Materials. 2011;4:1081-1089.
There are 23 citations in total.

Details

Primary Language Turkish
Journal Section Articles
Authors

Duygu Ege This is me

Publication Date January 1, 2013
Published in Issue Year 2013

Cite

APA Ege, D. (2013). NaOH Konsantrasyonunun ve NaOH Bekletme Süresinin Kemik Greftlerinde Kullanılan CHA/PCL Kompozitlerinin Biyolojik Yıkımına Etkisi. Ankara Üniversitesi Tıp Fakültesi Mecmuası, 66(1), 1-5. https://doi.org/10.1501/Tipfak_0000000833
AMA Ege D. NaOH Konsantrasyonunun ve NaOH Bekletme Süresinin Kemik Greftlerinde Kullanılan CHA/PCL Kompozitlerinin Biyolojik Yıkımına Etkisi. Ankara Üniversitesi Tıp Fakültesi Mecmuası. January 2013;66(1):1-5. doi:10.1501/Tipfak_0000000833
Chicago Ege, Duygu. “NaOH Konsantrasyonunun Ve NaOH Bekletme Süresinin Kemik Greftlerinde Kullanılan CHA/PCL Kompozitlerinin Biyolojik Yıkımına Etkisi”. Ankara Üniversitesi Tıp Fakültesi Mecmuası 66, no. 1 (January 2013): 1-5. https://doi.org/10.1501/Tipfak_0000000833.
EndNote Ege D (January 1, 2013) NaOH Konsantrasyonunun ve NaOH Bekletme Süresinin Kemik Greftlerinde Kullanılan CHA/PCL Kompozitlerinin Biyolojik Yıkımına Etkisi. Ankara Üniversitesi Tıp Fakültesi Mecmuası 66 1 1–5.
IEEE D. Ege, “NaOH Konsantrasyonunun ve NaOH Bekletme Süresinin Kemik Greftlerinde Kullanılan CHA/PCL Kompozitlerinin Biyolojik Yıkımına Etkisi”, Ankara Üniversitesi Tıp Fakültesi Mecmuası, vol. 66, no. 1, pp. 1–5, 2013, doi: 10.1501/Tipfak_0000000833.
ISNAD Ege, Duygu. “NaOH Konsantrasyonunun Ve NaOH Bekletme Süresinin Kemik Greftlerinde Kullanılan CHA/PCL Kompozitlerinin Biyolojik Yıkımına Etkisi”. Ankara Üniversitesi Tıp Fakültesi Mecmuası 66/1 (January 2013), 1-5. https://doi.org/10.1501/Tipfak_0000000833.
JAMA Ege D. NaOH Konsantrasyonunun ve NaOH Bekletme Süresinin Kemik Greftlerinde Kullanılan CHA/PCL Kompozitlerinin Biyolojik Yıkımına Etkisi. Ankara Üniversitesi Tıp Fakültesi Mecmuası. 2013;66:1–5.
MLA Ege, Duygu. “NaOH Konsantrasyonunun Ve NaOH Bekletme Süresinin Kemik Greftlerinde Kullanılan CHA/PCL Kompozitlerinin Biyolojik Yıkımına Etkisi”. Ankara Üniversitesi Tıp Fakültesi Mecmuası, vol. 66, no. 1, 2013, pp. 1-5, doi:10.1501/Tipfak_0000000833.
Vancouver Ege D. NaOH Konsantrasyonunun ve NaOH Bekletme Süresinin Kemik Greftlerinde Kullanılan CHA/PCL Kompozitlerinin Biyolojik Yıkımına Etkisi. Ankara Üniversitesi Tıp Fakültesi Mecmuası. 2013;66(1):1-5.