Research Article
BibTex RIS Cite

TGF-β and Wnt Pathways Underlying the Pathophysiology of Degenerative Mitral Valve Regurgitation

Year 2024, Volume: 77 Issue: 4, 410 - 415, 29.12.2024

Abstract

Objectives: In aging society, hospitalizations and mitral valve surgeries are becoming more common due to progressive mitral valve diseases that
ultimately lead to heart failure. In developing countries, degenerative mitral valve regurgitation (DMVR) is the leading cause of mitral regurgitation
requiring surgical treatment. Nevertheless, a more profound understanding of the underlying pathological processes via a molecular biology
approach could improve clinical management. In this study, bioinformatic analyses were performed to elucidate the underlying pathophysiological
molecular mechanisms using transcriptome data of atrial tissues from patients with DMVR.

Materials and Methods: Bioinformatic analysis were done using GSE115574 dataset from The Gene Expression Omnibus (GEO) database. Transcriptome
data which were downloaded from GEO database in CEL files generated from human left atrium and right atrium tissues in patients with DMVR in
sinus rhythm (n=16) was used to perform bioinformatic analysis. Gene expression microarray analysis have done on Affymetrix platform previously.
Bioinformatics, gene ontology, and functional enrichment analysis have been conducted on Partek GS V7.0 and WebGestalt software.

Results: The findings of this study reveal that multiple genes and various pathways play a role in the pathophysiology of DMVR. Among all
transforming growth factor-beta (TGF-β) and Wnt signaling pathways enlightened according to false discovery rate thresholds and enriched geneset
values. Prominent genes that involved in TGF-β and Wnt signaling pathways were WNT5A, PLCB1, SFRP1, SMAD6, PITX2, SMAD7, ID2, BMP5.

Conclusion: It’s important to crystallize the molecular mechanisms of DMVR to facilitate early detection and develop targeted interventions.
Management of TGF-β and Wnt signaling pathways in correct direction may offer solutions to slow DMVR progression and prevent it from becoming
more complex.

Ethical Statement

Bulgular: Bu çalışmanın bulguları, DMVR patofizyolojisinde birden fazla genin ve çeşitli yolakların rol oynadığını ortaya koymaktadır. Tüm dönüştürücü büyüme faktörü-beta (TGF-β) ve Wnt sinyal yolakları arasında yanlış keşif oranı eşiklerine ve zenginleştirilmiş gen seti değerlerine göre aydınlatılmıştır. TGF-β ve Wnt sinyal yolaklarında yer alan öne çıkan genler WNT5A, PLCB1, SFRP1, SMAD6, PITX2, SMAD7, ID2, BMP5 olarak tespit edilmiştir. Sonuç: Erken teşhisi kolaylaştırmak ve hedefe yönelik müdahaleler geliştirmek için DMVR’nin moleküler mekanizmalarının tam olarak aydınlatılması önemlidir. TGF-β ve Wnt sinyal yolaklarının doğru şekilde yönetilmesi, DMVR progresyonunu yavaşlatmak ve daha karmaşık hale gelmesini önlemek için çözümler sunabilir.

Supporting Institution

-

Project Number

-

Thanks

-

References

  • 1. Michelena HI, Topilsky Y, Suri R, et al. Degenerative mitral valve regurgitation: understanding basic concepts and new developments. Postgrad Med. 2011;123:56-69.
  • 2. Del Forno B, Ascione G, De Bonis M. Advances in Mitral Valve Repair for Degenerative Mitral Regurgitation: Philosophy, Technical Details, and Long- Term Results. Cardiol Clin. 2021;39:175-184.
  • 3. Schnabel RB, Yin X, Gona P, et al. 50 year trends in atrial fibrillation prevalence, incidence, risk factors, and mortality in the Framingham Heart Study: a cohort study. Lancet. 2015;386:154-162.
  • 4. Grigioni F, Benfari G, Vanoverschelde JL, et al. Long-term implications of atrial fibrillation in patients with degenerative mitral regurgitation. J Am Coll Cardiol. 2019;73:264-274.
  • 5. Bäck M, Pizarro R, Clavel MA. Biomarkers in mitral regurgitation. Prog Cardiovasc Dis. 2017;60:334-341.
  • 6. Tan HT, Lim TK, Richards AM, et al. Unravelling the proteome of degenerative human mitral valves. Proteomics. 2015;15:2934-2944.
  • 7. Orton EC, Lacerda CM, MacLea HB. Signaling pathways in mitral valve degeneration. J Vet Cardiol. 2012;14:7-17.
  • 8. Combs MD, Yutzey KE. Heart valve development: regulatory networks in development and disease. Circ Res. 2009;105:408-421.
  • 9. Moesgaard SG, Olsen LH, Aasted B, et al. Direct measurements of nitric oxide release in relation to expression of endothelial nitric oxide synthase in isolated porcine mitral valves. J Vet Med A Physiol Pathol Clin Med. 2007;54:156-160.
  • 10. Timmerman LA, Grego-Bessa J, Raya A, et al. Notch promotes epithelialmesenchymal transition during cardiac development and oncogenic transformation. Genes Dev. 2004;18:99-115.
  • 11. Çubukçuoğlu Deniz G, Durdu S, Doğan Y, et al. Molecular signatures of human chronic atrial fibrillation in primary mitral regurgitation. Cardiovasc Ther. 2021;2021:5516185.
  • 12. Iung B, Baron G, Butchart EG, et al. A prospective survey of patients with valvular heart disease in Europe: The Euro heart survey on valvular heart disease. Eur Heart J. 2003;24:1231-1243.
  • 13. Perrucci GL, Zanobini M, Gripari P, et al. Pathophysiology of aortic stenosis and mitral regurgitation. Compr Physiol. 2017;7:799-818.
  • 14. Tzavlaki K, Moustakas A. TGF-β signaling. Biomolecules. 2020;10:487.
  • 15. Hagler MA, Hadley TM, Zhang H, et al. TGF-β signalling and reactive oxygen species drive fibrosis and matrix remodelling in myxomatous mitral valves. Cardiovasc Res. 2013;99:175-184.
  • 16. Hulin A, Deroanne CF, Lambert CA, et al. Metallothionein-dependent upregulation of TGF-β2 participates in the remodelling of the myxomatous mitral valve. Cardiovasc Res. 2012;93:480-489.
  • 17. Merryman WD, Lukoff HD, Long RA, et al. Synergistic effects of cyclic tension and transforming growth factor-beta1 on the aortic valve myofibroblast. Cardiovasc Pathol. 2007;16:268-276.
  • 18. Miller JD, Weiss RM, Serrano KM, et al. Evidence for active regulation of proosteogenic signaling in advanced aortic valve disease. Arterioscler Thromb Vasc Biol. 2010;30:2482-2486.
  • 19. Hata A, Chen YG. TGF-β signaling from receptors to smads. Cold Spring Harb Perspect Biol. 2016;8:a022061.
  • 20. Blyszczuk P, Müller-Edenborn B, Valenta T, et al. Transforming growth factor- β-dependent Wnt secretion controls myofibroblast formation and myocardial fibrosis progression in experimental autoimmune myocarditis. Eur Heart J. 2017;38:1413-1425.
  • 21. Liu J, Xiao Q, Xiao J, Niu C, Li Y, Zhang X, Zhou Z, Shu G, Yin G. Wnt/β-catenin signalling: function, biological mechanisms, and therapeutic opportunities. Signal Transduct Target Ther. 2022;7:3.
  • 22. Cohen ED, Miller MF, Wang Z, et al. Wnt5a and Wnt11 are essential for second heart field progenitor development. Development. 2012;139:1931- 1940.
  • 23. Khan K, Yu B, Tardif JC, et al. Significance of the Wnt signaling pathway in coronary artery atherosclerosis. Front Cardiovasc Med. 2024;11:1360380.
  • 24. Hartmann C, Tabin CJ. Dual roles of Wnt signaling during chondrogenesis in the chicken limb. Development. 2000;127:3141-3159.
  • 25. Tuan RS. Cellular signaling in developmental chondrogenesis: N-cadherin, Wnts, and BMP-2. J Bone Joint Surg Am. 2003;85-A Suppl 2:137-141.
  • 26. Yadav VK, Ducy P. Lrp5 and bone formation : a serotonin-dependent pathway. Ann N Y Acad Sci. 2010;1192:103-109.
  • 27. Caira FC, Stock SR, Gleason TG, et al. Human degenerative valve disease is associated with up-regulation of low-density lipoprotein receptorrelated protein 5 receptor-mediated bone formation. J Am Coll Cardiol. 2006;47:1707-1712.
  • 28. Jian B, Xu J, Connolly J, et al. Serotonin mechanisms in heart valve disease I: serotonin-induced up-regulation of transforming growth factor-beta1 via G-protein signal transduction in aortic valve interstitial cells. Am J Pathol. 2002;161:2111-2121.

Dejeneratif Mitral Yetmezliği Patofizyolojisinde Yer Alan TGF-β ve Wnt Sinyal Yolakları

Year 2024, Volume: 77 Issue: 4, 410 - 415, 29.12.2024

Abstract

Amaç: Yaşlanan toplumlarda, en nihayetinde kalp yetmezliğine ilerleyen progresif mitral kapak hastalıkları nedeniyle hastaneye yatışlar ve mitral
kapak ameliyatları daha yaygın hale gelmiştir. Gelişmekte olan ülkelerde, dejeneratif mitral kapak yetersizliği (DMVR) cerrahi tedavi gerektiren
mitral yetersizliğinin önde gelen nedenidir. Bununla birlikte, altta yatan patolojik süreçlerin moleküler biyoloji yaklaşımıyla daha derinlemesine
anlaşılması klinik yönetimi iyileştirebilir. Bu araştırmada, DMVR’li hastalardan alınan atriyum dokularının transkriptom verisi kullanılarak, altta yatan
patofizyolojik moleküler mekanizmaları aydınlatmak amacıyla biyoinformatik analizler yapılmıştır.

Gereç ve Yöntem: Biyoinformatik analizler, Gen Ekspresyon Omnibus (GEO) veritabanından GSE115574 veriseti kullanılarak gerçekleştirilmiştir.
Sinüs ritmindeki DMVR hastalarında (n=16) insan sol atriyum ve sağ atriyum elde edilen ve GEO veritabanından CEL dosyaları olarak indirilen
transkriptom verisi biyoinformatik analizleri yapmak için kullanılmıştır. Gen ekspresyon mikroarray analizleri daha öncesinde Affymetrix
platformunda gerçekleştirilmiştir. Biyoinformatik, gen ontolojisi ve fonksiyonel zenginleştirme analizleri Partek GS V7.0 ve WebGestalt yazılımlarında
gerçekleştirilmiştir.

Bulgular: Bu çalışmanın bulguları, DMVR patofizyolojisinde birden fazla genin ve çeşitli yolakların rol oynadığını ortaya koymaktadır. Tüm dönüştürücü
büyüme faktörü-beta (TGF-β) ve Wnt sinyal yolakları arasında yanlış keşif oranı eşiklerine ve zenginleştirilmiş gen seti değerlerine göre aydınlatılmıştır.
TGF-β ve Wnt sinyal yolaklarında yer alan öne çıkan genler WNT5A, PLCB1, SFRP1, SMAD6, PITX2, SMAD7, ID2, BMP5 olarak tespit edilmiştir.

Sonuç: Erken teşhisi kolaylaştırmak ve hedefe yönelik müdahaleler geliştirmek için DMVR’nin moleküler mekanizmalarının tam olarak aydınlatılması
önemlidir. TGF-β ve Wnt sinyal yolaklarının doğru şekilde yönetilmesi, DMVR progresyonunu yavaşlatmak ve daha karmaşık hale gelmesini önlemek
için çözümler sunabilir.

Ethical Statement

Bulgular: Bu çalışmanın bulguları, DMVR patofizyolojisinde birden fazla genin ve çeşitli yolakların rol oynadığını ortaya koymaktadır. Tüm dönüştürücü büyüme faktörü-beta (TGF-β) ve Wnt sinyal yolakları arasında yanlış keşif oranı eşiklerine ve zenginleştirilmiş gen seti değerlerine göre aydınlatılmıştır. TGF-β ve Wnt sinyal yolaklarında yer alan öne çıkan genler WNT5A, PLCB1, SFRP1, SMAD6, PITX2, SMAD7, ID2, BMP5 olarak tespit edilmiştir. Sonuç: Erken teşhisi kolaylaştırmak ve hedefe yönelik müdahaleler geliştirmek için DMVR’nin moleküler mekanizmalarının tam olarak aydınlatılması önemlidir. TGF-β ve Wnt sinyal yolaklarının doğru şekilde yönetilmesi, DMVR progresyonunu yavaşlatmak ve daha karmaşık hale gelmesini önlemek için çözümler sunabilir.

Supporting Institution

-

Project Number

-

Thanks

-

References

  • 1. Michelena HI, Topilsky Y, Suri R, et al. Degenerative mitral valve regurgitation: understanding basic concepts and new developments. Postgrad Med. 2011;123:56-69.
  • 2. Del Forno B, Ascione G, De Bonis M. Advances in Mitral Valve Repair for Degenerative Mitral Regurgitation: Philosophy, Technical Details, and Long- Term Results. Cardiol Clin. 2021;39:175-184.
  • 3. Schnabel RB, Yin X, Gona P, et al. 50 year trends in atrial fibrillation prevalence, incidence, risk factors, and mortality in the Framingham Heart Study: a cohort study. Lancet. 2015;386:154-162.
  • 4. Grigioni F, Benfari G, Vanoverschelde JL, et al. Long-term implications of atrial fibrillation in patients with degenerative mitral regurgitation. J Am Coll Cardiol. 2019;73:264-274.
  • 5. Bäck M, Pizarro R, Clavel MA. Biomarkers in mitral regurgitation. Prog Cardiovasc Dis. 2017;60:334-341.
  • 6. Tan HT, Lim TK, Richards AM, et al. Unravelling the proteome of degenerative human mitral valves. Proteomics. 2015;15:2934-2944.
  • 7. Orton EC, Lacerda CM, MacLea HB. Signaling pathways in mitral valve degeneration. J Vet Cardiol. 2012;14:7-17.
  • 8. Combs MD, Yutzey KE. Heart valve development: regulatory networks in development and disease. Circ Res. 2009;105:408-421.
  • 9. Moesgaard SG, Olsen LH, Aasted B, et al. Direct measurements of nitric oxide release in relation to expression of endothelial nitric oxide synthase in isolated porcine mitral valves. J Vet Med A Physiol Pathol Clin Med. 2007;54:156-160.
  • 10. Timmerman LA, Grego-Bessa J, Raya A, et al. Notch promotes epithelialmesenchymal transition during cardiac development and oncogenic transformation. Genes Dev. 2004;18:99-115.
  • 11. Çubukçuoğlu Deniz G, Durdu S, Doğan Y, et al. Molecular signatures of human chronic atrial fibrillation in primary mitral regurgitation. Cardiovasc Ther. 2021;2021:5516185.
  • 12. Iung B, Baron G, Butchart EG, et al. A prospective survey of patients with valvular heart disease in Europe: The Euro heart survey on valvular heart disease. Eur Heart J. 2003;24:1231-1243.
  • 13. Perrucci GL, Zanobini M, Gripari P, et al. Pathophysiology of aortic stenosis and mitral regurgitation. Compr Physiol. 2017;7:799-818.
  • 14. Tzavlaki K, Moustakas A. TGF-β signaling. Biomolecules. 2020;10:487.
  • 15. Hagler MA, Hadley TM, Zhang H, et al. TGF-β signalling and reactive oxygen species drive fibrosis and matrix remodelling in myxomatous mitral valves. Cardiovasc Res. 2013;99:175-184.
  • 16. Hulin A, Deroanne CF, Lambert CA, et al. Metallothionein-dependent upregulation of TGF-β2 participates in the remodelling of the myxomatous mitral valve. Cardiovasc Res. 2012;93:480-489.
  • 17. Merryman WD, Lukoff HD, Long RA, et al. Synergistic effects of cyclic tension and transforming growth factor-beta1 on the aortic valve myofibroblast. Cardiovasc Pathol. 2007;16:268-276.
  • 18. Miller JD, Weiss RM, Serrano KM, et al. Evidence for active regulation of proosteogenic signaling in advanced aortic valve disease. Arterioscler Thromb Vasc Biol. 2010;30:2482-2486.
  • 19. Hata A, Chen YG. TGF-β signaling from receptors to smads. Cold Spring Harb Perspect Biol. 2016;8:a022061.
  • 20. Blyszczuk P, Müller-Edenborn B, Valenta T, et al. Transforming growth factor- β-dependent Wnt secretion controls myofibroblast formation and myocardial fibrosis progression in experimental autoimmune myocarditis. Eur Heart J. 2017;38:1413-1425.
  • 21. Liu J, Xiao Q, Xiao J, Niu C, Li Y, Zhang X, Zhou Z, Shu G, Yin G. Wnt/β-catenin signalling: function, biological mechanisms, and therapeutic opportunities. Signal Transduct Target Ther. 2022;7:3.
  • 22. Cohen ED, Miller MF, Wang Z, et al. Wnt5a and Wnt11 are essential for second heart field progenitor development. Development. 2012;139:1931- 1940.
  • 23. Khan K, Yu B, Tardif JC, et al. Significance of the Wnt signaling pathway in coronary artery atherosclerosis. Front Cardiovasc Med. 2024;11:1360380.
  • 24. Hartmann C, Tabin CJ. Dual roles of Wnt signaling during chondrogenesis in the chicken limb. Development. 2000;127:3141-3159.
  • 25. Tuan RS. Cellular signaling in developmental chondrogenesis: N-cadherin, Wnts, and BMP-2. J Bone Joint Surg Am. 2003;85-A Suppl 2:137-141.
  • 26. Yadav VK, Ducy P. Lrp5 and bone formation : a serotonin-dependent pathway. Ann N Y Acad Sci. 2010;1192:103-109.
  • 27. Caira FC, Stock SR, Gleason TG, et al. Human degenerative valve disease is associated with up-regulation of low-density lipoprotein receptorrelated protein 5 receptor-mediated bone formation. J Am Coll Cardiol. 2006;47:1707-1712.
  • 28. Jian B, Xu J, Connolly J, et al. Serotonin mechanisms in heart valve disease I: serotonin-induced up-regulation of transforming growth factor-beta1 via G-protein signal transduction in aortic valve interstitial cells. Am J Pathol. 2002;161:2111-2121.
There are 28 citations in total.

Details

Primary Language English
Subjects Cell Physiology
Journal Section Articles
Authors

Günseli Çubukçuoğlu Deniz 0000-0002-2407-2450

Project Number -
Publication Date December 29, 2024
Submission Date May 27, 2024
Acceptance Date December 26, 2024
Published in Issue Year 2024 Volume: 77 Issue: 4

Cite

APA Çubukçuoğlu Deniz, G. (2024). TGF-β and Wnt Pathways Underlying the Pathophysiology of Degenerative Mitral Valve Regurgitation. Ankara Üniversitesi Tıp Fakültesi Mecmuası, 77(4), 410-415. https://doi.org/10.4274/atfm.galenos.2024.20092
AMA Çubukçuoğlu Deniz G. TGF-β and Wnt Pathways Underlying the Pathophysiology of Degenerative Mitral Valve Regurgitation. Ankara Üniversitesi Tıp Fakültesi Mecmuası. December 2024;77(4):410-415. doi:10.4274/atfm.galenos.2024.20092
Chicago Çubukçuoğlu Deniz, Günseli. “TGF-β and Wnt Pathways Underlying the Pathophysiology of Degenerative Mitral Valve Regurgitation”. Ankara Üniversitesi Tıp Fakültesi Mecmuası 77, no. 4 (December 2024): 410-15. https://doi.org/10.4274/atfm.galenos.2024.20092.
EndNote Çubukçuoğlu Deniz G (December 1, 2024) TGF-β and Wnt Pathways Underlying the Pathophysiology of Degenerative Mitral Valve Regurgitation. Ankara Üniversitesi Tıp Fakültesi Mecmuası 77 4 410–415.
IEEE G. Çubukçuoğlu Deniz, “TGF-β and Wnt Pathways Underlying the Pathophysiology of Degenerative Mitral Valve Regurgitation”, Ankara Üniversitesi Tıp Fakültesi Mecmuası, vol. 77, no. 4, pp. 410–415, 2024, doi: 10.4274/atfm.galenos.2024.20092.
ISNAD Çubukçuoğlu Deniz, Günseli. “TGF-β and Wnt Pathways Underlying the Pathophysiology of Degenerative Mitral Valve Regurgitation”. Ankara Üniversitesi Tıp Fakültesi Mecmuası 77/4 (December2024), 410-415. https://doi.org/10.4274/atfm.galenos.2024.20092.
JAMA Çubukçuoğlu Deniz G. TGF-β and Wnt Pathways Underlying the Pathophysiology of Degenerative Mitral Valve Regurgitation. Ankara Üniversitesi Tıp Fakültesi Mecmuası. 2024;77:410–415.
MLA Çubukçuoğlu Deniz, Günseli. “TGF-β and Wnt Pathways Underlying the Pathophysiology of Degenerative Mitral Valve Regurgitation”. Ankara Üniversitesi Tıp Fakültesi Mecmuası, vol. 77, no. 4, 2024, pp. 410-5, doi:10.4274/atfm.galenos.2024.20092.
Vancouver Çubukçuoğlu Deniz G. TGF-β and Wnt Pathways Underlying the Pathophysiology of Degenerative Mitral Valve Regurgitation. Ankara Üniversitesi Tıp Fakültesi Mecmuası. 2024;77(4):410-5.