Review
BibTex RIS Cite

P2X7 Receptor Mediated Increase In Cell Membrane Permeability

Year 2018, Volume: 71 Issue: 1, 31 - 34, 16.10.2018

Abstract

Purinergic receptors consist of two main families; P2X and P2Y. P2Y receptors are G protein coupled receptors (GPCR), whereas P2X receptors are non-selective cation channels. P2X7 receptors which is a member of P2X receptors, have been found myriad types of cells including immune cells. The activation of this receptor leads to IL-1β release and caspase activation as well as an increase in membranepermeability to big molecules. Spectroscopic and electrophysiologic methods have been used to investigate membrane permeability. Different hypotheses have been proposed as an explanation for big permeability. One of them proposes that P2X7 channel itself dilates and becomes permeable to big molecules, whereas the other proposes participation of another channels to big permeability. Since it has been demonstrated that P2X7 receptor has a role in many disease processes including inflamation, pain, cancer and Alzheimer’s disease, its antagonists and modulators have been regarded as a good drug target. The uncovering of its activation mechanism is important for treatment of many diseases.

Ethical Statement

-

Supporting Institution

-

Project Number

-

Thanks

-

References

  • 1. Burnstock G, Campbell G, Satchell D, et al. Evidence that adenosine triphosphate or a related nucleotide is the transmitter substance released by non-adrenergic inhibitory nerves in the gut. Br J Pharmacol. 1970; 40:668–688.
  • 2. Schwiebert EM, Zsembery A, Geibely JP. Cellular Mechanisms and Physiology of Nucleotide and Nucleoside Release from Cells: Current Knowledge, Novel Assays to Detect Purinergic Agonists, and Future Directions. Current Topics in Membranes. 2003; Volume 54:31-58
  • 3. Burnstock G. Introduction and perspective, historical note. Front Cell Neurosci. 2013;7:1-13
  • 4. Ivar von Kügelgen. Pharmacological profiles of cloned mammalian P2Y-receptor subtypes. Biotrend Reviews. 2008; 9:1-12
  • 5. North RA ve Barnard EA. Nucleotide receptors. Curr Opin Neurobiol. 1997; Jun 110(3):415-32
  • 6. Surprenant A ve North RA. Signaling at purinergic P2X receptors. Annu Rev Physiol. 2009; 71:333-59
  • 7. Burnstock G. Purinergic signalling: from discovery to current developments. Exp Physiol. 2014; 99(1):16-34
  • 8. Surprenant A, Rassendren F, Kawashima E et al. The cytolytic P2Z receptor for extracellular ATP identified as a P2X receptor (P2X7). Science. 1996; 272: 735–738.
  • 9. Bartlett R, Stokes L, Sluyter R. The P2X7 receptor channel: recent developments and the use of P2X7 antagonists in models of disease. Pharmacol Rev. 2014; 66(3):638-75.
  • 10. Jacobson KA, Müller CE. Medicinal chemistry of adenosine, P2Y and P2X receptors. Neuropharmacology. 2016; May 104:31-49.
  • 11. North RA. Molecular physiology of P2X receptors. Physiol Rev. 2002; 82: 1013–1067.
  • 12. North RA, Surprenant A. pharmacology of cloned P2X receptors. Annu Rev Pharmacol Toxicol. 2000; 40:563-80. Review.
  • 13. Coddou C, Yan Z, Obsil T, et al. Activation and regulation of purinergic P2X receptor channels. Pharmacol Rev. 2011; 63(3):641-83.
  • 14. Jarvis MF, Khakh BS. ATP-gated P2X cation- channels. Neuropharmacology. 2009; 56(1):208-15
  • 15. Donnelly-Roberts D L, Namovic MT, Surber B, et al. [3H]A-804598 ([3H]2- cyano-1-[(1S)-1 phenylethyl]-3-quinolin-5- ylguanidine) is a novel, potent, and selective antagonist radioligand for P2X7 receptors. Neuropharmacology. 2009; 56(1):223-9.
  • 16. Saul A, Hausmann R, Kless A, et al. Heteromeric assembly of P2X subunits. Front Cell Neurosci. 2013; 18:7:250
  • 17. Jıang, LH. Inhibition of P2X(7) receptors by divalent cations: old action and new insight. Eur Biophys J. 2009; 38(3):339-46
  • 18. Yan Z, Lı S, Lıang Z, et al.The P2X7 receptor channel pore dilates under physiological ion conditions. J Gen Physiol. 2008; 132(5):563-73.
  • 19. Virginio C, Church D, North RA, Surprenant A. Effects of divalent cations, protons and calmidazolium at the rat P2X7 receptor. Neuropharmacology. 1997; 36(9):1285-94.
  • 20. Virginio C, Mackenzie A, North RA, Surprenant A. Kinetics of cell lysis, dye uptake and permeability changes in cells expressing the rat P2X7 receptor. J Physiol 1999; 519: 335–346.
  • 21. Thomas H. Steinberg, Alan S. Newman, Joel A. Swanson, Samuel C. Silverstein. ATP4- Permeabilizes the plasma membrane of mouse macrophages to fluorescent dyes. The Journal of Biological Chemistry. 1987; 262(18):8884-8888.
  • 22. Schachter J, Motta AP, de Souza Zamorano A, et al. ATP-induced P2X7-associated uptake of large molecules involves distinct mechanisms for cations and anions in macrophages. J Cell Sci. 2008; 121: 3261-3270.
  • 23. Cankurtaran-Sayar S, Sayar K, Ugur M. P2X7 receptor activates multiple selective dye permeation pathways in RAW 264.7 and human embryonic kidney 293 cells. Mol Pharmacol. 2009; 76:1323-1332.
  • 24. Ferreira LGB, Reis RAM, Alves LA, et al. Intracellular Signaling Pathways Integrating the Pore Associated with P2X7R Receptor with Other Large Pores. Patch Clamp Technique. Intech; Chapter 2:37-54
  • 25. Nielsen MS, Axelsen LN, Sorgen PL, et al. Holstein-Rathlou NH Gap junctions. Compr Physiol. 2012; Jul2(3):1981-2035.
  • 26. Beyer EC, Steinberg TH. Evidence that the gap junction protein connexin-43 isthe ATP-induced pore of mouse macrophages. J Biol Chem. 1991; 266:7971-7974.
  • 27. Alves LA, Coutinho-Silva R, Persechini PM, et al. Are there functional gap junctions or junctional hemichannels in macrophages? Blood. 1996; 88: 328-334.
  • 28. Faria RX, Defarias FP, Alves LA. Are second messengers crucial for opening the pore associated with P2X7 receptor? Am J Physiol Cell Physiol. 2005; 288: C260-71.
  • 29. Dahl G, Keane RW. Pannexin: From discovery to bedside in 11±4 years? BrainResearch. 2012; 1487:150-9
  • 30. Pelegrin P, Surprenant A. Pannexin-1 mediates large pore formation and interleukin- 1b release by the ATP-gated P2X7 receptor. EMBO J. 2006; 25:5071–5082

P2X7 Reseptörü Aracılı Hücre Membran Geçirgenlik Artıșı

Year 2018, Volume: 71 Issue: 1, 31 - 34, 16.10.2018

Abstract

Pürinerjik reseptörler P2X ve P2Y olmak üzere iki ana aileden olușmaktadır. P2Y reseptörleri G-proteini kenetli reseptörler (GPKR), P2X reseptörleri seçici olmayan katyon kanallarıdır. P2X reseptörlerinin 7 üyesinden biri olan P2X7 reseptörü immün hücreler bașta olmak üzere birçok tip hücrede bulunmaktadır. IL-1β salınımı, kaspaz aktivasyonu gibi hücre içinde birçok sinyal yolağını aktive etmekle beraber, diğer üyelerden farklı olarak membranda büyük bir geçirgenlik aktive etmektedir. Membran geçirgenliğini incelemek için spektroskopik ve elektrofizyolojik yöntemler kullanılmaktadır. Büyük geçirgenliğin mekanizmasını açıklamak için çeșitli hipotezler öne sürülmektedir. Bunlardan biri P2X7 kanalının genișleyerek büyük moleküllere geçirgen hale geldiği, diğeri ise geçirgenliğin bașka bir protein aracılığıyla olduğudur. P2X7 reseptörü inflamasyon, ağrı, kanser ve Alzhzeimer gibi birçok hastalıkta rolü olduğu gösterilen bir reseptör olduğu için antagonistleri ve modülatörleri iyi birer ilaç hedefi olarak görülmektedir. Aktivasyon mekanizmasının aydınlatılması da birçok hastalığın tedavisi için önem tașımaktadır.

Ethical Statement

-

Supporting Institution

-

Project Number

-

Thanks

-

References

  • 1. Burnstock G, Campbell G, Satchell D, et al. Evidence that adenosine triphosphate or a related nucleotide is the transmitter substance released by non-adrenergic inhibitory nerves in the gut. Br J Pharmacol. 1970; 40:668–688.
  • 2. Schwiebert EM, Zsembery A, Geibely JP. Cellular Mechanisms and Physiology of Nucleotide and Nucleoside Release from Cells: Current Knowledge, Novel Assays to Detect Purinergic Agonists, and Future Directions. Current Topics in Membranes. 2003; Volume 54:31-58
  • 3. Burnstock G. Introduction and perspective, historical note. Front Cell Neurosci. 2013;7:1-13
  • 4. Ivar von Kügelgen. Pharmacological profiles of cloned mammalian P2Y-receptor subtypes. Biotrend Reviews. 2008; 9:1-12
  • 5. North RA ve Barnard EA. Nucleotide receptors. Curr Opin Neurobiol. 1997; Jun 110(3):415-32
  • 6. Surprenant A ve North RA. Signaling at purinergic P2X receptors. Annu Rev Physiol. 2009; 71:333-59
  • 7. Burnstock G. Purinergic signalling: from discovery to current developments. Exp Physiol. 2014; 99(1):16-34
  • 8. Surprenant A, Rassendren F, Kawashima E et al. The cytolytic P2Z receptor for extracellular ATP identified as a P2X receptor (P2X7). Science. 1996; 272: 735–738.
  • 9. Bartlett R, Stokes L, Sluyter R. The P2X7 receptor channel: recent developments and the use of P2X7 antagonists in models of disease. Pharmacol Rev. 2014; 66(3):638-75.
  • 10. Jacobson KA, Müller CE. Medicinal chemistry of adenosine, P2Y and P2X receptors. Neuropharmacology. 2016; May 104:31-49.
  • 11. North RA. Molecular physiology of P2X receptors. Physiol Rev. 2002; 82: 1013–1067.
  • 12. North RA, Surprenant A. pharmacology of cloned P2X receptors. Annu Rev Pharmacol Toxicol. 2000; 40:563-80. Review.
  • 13. Coddou C, Yan Z, Obsil T, et al. Activation and regulation of purinergic P2X receptor channels. Pharmacol Rev. 2011; 63(3):641-83.
  • 14. Jarvis MF, Khakh BS. ATP-gated P2X cation- channels. Neuropharmacology. 2009; 56(1):208-15
  • 15. Donnelly-Roberts D L, Namovic MT, Surber B, et al. [3H]A-804598 ([3H]2- cyano-1-[(1S)-1 phenylethyl]-3-quinolin-5- ylguanidine) is a novel, potent, and selective antagonist radioligand for P2X7 receptors. Neuropharmacology. 2009; 56(1):223-9.
  • 16. Saul A, Hausmann R, Kless A, et al. Heteromeric assembly of P2X subunits. Front Cell Neurosci. 2013; 18:7:250
  • 17. Jıang, LH. Inhibition of P2X(7) receptors by divalent cations: old action and new insight. Eur Biophys J. 2009; 38(3):339-46
  • 18. Yan Z, Lı S, Lıang Z, et al.The P2X7 receptor channel pore dilates under physiological ion conditions. J Gen Physiol. 2008; 132(5):563-73.
  • 19. Virginio C, Church D, North RA, Surprenant A. Effects of divalent cations, protons and calmidazolium at the rat P2X7 receptor. Neuropharmacology. 1997; 36(9):1285-94.
  • 20. Virginio C, Mackenzie A, North RA, Surprenant A. Kinetics of cell lysis, dye uptake and permeability changes in cells expressing the rat P2X7 receptor. J Physiol 1999; 519: 335–346.
  • 21. Thomas H. Steinberg, Alan S. Newman, Joel A. Swanson, Samuel C. Silverstein. ATP4- Permeabilizes the plasma membrane of mouse macrophages to fluorescent dyes. The Journal of Biological Chemistry. 1987; 262(18):8884-8888.
  • 22. Schachter J, Motta AP, de Souza Zamorano A, et al. ATP-induced P2X7-associated uptake of large molecules involves distinct mechanisms for cations and anions in macrophages. J Cell Sci. 2008; 121: 3261-3270.
  • 23. Cankurtaran-Sayar S, Sayar K, Ugur M. P2X7 receptor activates multiple selective dye permeation pathways in RAW 264.7 and human embryonic kidney 293 cells. Mol Pharmacol. 2009; 76:1323-1332.
  • 24. Ferreira LGB, Reis RAM, Alves LA, et al. Intracellular Signaling Pathways Integrating the Pore Associated with P2X7R Receptor with Other Large Pores. Patch Clamp Technique. Intech; Chapter 2:37-54
  • 25. Nielsen MS, Axelsen LN, Sorgen PL, et al. Holstein-Rathlou NH Gap junctions. Compr Physiol. 2012; Jul2(3):1981-2035.
  • 26. Beyer EC, Steinberg TH. Evidence that the gap junction protein connexin-43 isthe ATP-induced pore of mouse macrophages. J Biol Chem. 1991; 266:7971-7974.
  • 27. Alves LA, Coutinho-Silva R, Persechini PM, et al. Are there functional gap junctions or junctional hemichannels in macrophages? Blood. 1996; 88: 328-334.
  • 28. Faria RX, Defarias FP, Alves LA. Are second messengers crucial for opening the pore associated with P2X7 receptor? Am J Physiol Cell Physiol. 2005; 288: C260-71.
  • 29. Dahl G, Keane RW. Pannexin: From discovery to bedside in 11±4 years? BrainResearch. 2012; 1487:150-9
  • 30. Pelegrin P, Surprenant A. Pannexin-1 mediates large pore formation and interleukin- 1b release by the ATP-gated P2X7 receptor. EMBO J. 2006; 25:5071–5082
There are 30 citations in total.

Details

Primary Language English
Subjects Medical Pharmacology
Journal Section Articles
Authors

Kemal Sayar This is me

Project Number -
Publication Date October 16, 2018
Published in Issue Year 2018 Volume: 71 Issue: 1

Cite

APA Sayar, K. (2018). P2X7 Receptor Mediated Increase In Cell Membrane Permeability. Ankara Üniversitesi Tıp Fakültesi Mecmuası, 71(1), 31-34.
AMA Sayar K. P2X7 Receptor Mediated Increase In Cell Membrane Permeability. Ankara Üniversitesi Tıp Fakültesi Mecmuası. October 2018;71(1):31-34.
Chicago Sayar, Kemal. “P2X7 Receptor Mediated Increase In Cell Membrane Permeability”. Ankara Üniversitesi Tıp Fakültesi Mecmuası 71, no. 1 (October 2018): 31-34.
EndNote Sayar K (October 1, 2018) P2X7 Receptor Mediated Increase In Cell Membrane Permeability. Ankara Üniversitesi Tıp Fakültesi Mecmuası 71 1 31–34.
IEEE K. Sayar, “P2X7 Receptor Mediated Increase In Cell Membrane Permeability”, Ankara Üniversitesi Tıp Fakültesi Mecmuası, vol. 71, no. 1, pp. 31–34, 2018.
ISNAD Sayar, Kemal. “P2X7 Receptor Mediated Increase In Cell Membrane Permeability”. Ankara Üniversitesi Tıp Fakültesi Mecmuası 71/1 (October2018), 31-34.
JAMA Sayar K. P2X7 Receptor Mediated Increase In Cell Membrane Permeability. Ankara Üniversitesi Tıp Fakültesi Mecmuası. 2018;71:31–34.
MLA Sayar, Kemal. “P2X7 Receptor Mediated Increase In Cell Membrane Permeability”. Ankara Üniversitesi Tıp Fakültesi Mecmuası, vol. 71, no. 1, 2018, pp. 31-34.
Vancouver Sayar K. P2X7 Receptor Mediated Increase In Cell Membrane Permeability. Ankara Üniversitesi Tıp Fakültesi Mecmuası. 2018;71(1):31-4.