An Investigation on Molecular Basis of the Effects of SGLT2 İnhibitor Dapagliflozin on Hyperglycemia-Associated Heart Dysfunction
Year 2018,
Volume: 71 Issue: 3, 131 - 138, 25.12.2018
Belma Turan
Abstract
Objectives: It has been reported that sodium glucose co-transporter (SGLT) inhibitors lowering blood glucose in diabetic patients via inhibiting glucose re-absorption. Although it has not been clearly identified the effects of these inhibitors on heart function, these inhibitors may act like Na+/H+-exchanger (NHE) inhibitors. In this study, we were aimed to clarify the underlying cellular mechanism of a SGLT2-inhibitor, Dapagliflozin (DAPA), on hyperglycemic embryonic rat ventricular cells (H9c2 cell line) via electrophysiological measurements.
Materials and Methods: One group of H9c2 cells were incubated with high glucose (25 mM) medium for 24-hours and 48-hours at 37 °C to obtain hyperglycemic (HG) cardiomyocytes. Another group of H9c2 cells were incubated together with high glucose medium and DAPA (D185360, TORONTO Research Chemicals; 100 nM or 1 μM). Intracellular ion concentrations, ([X]in), reactive oxygen species, ([ROS]in) and mitochondrial membrane potential, (MMP) were monitored via specific fluorescent dyes (DCFDA, FluoZin-3AM, JC-1, SNARF, FURA-2AM and SBFI) with confocal microscope and microspectrofluorometer. All data are presented as mean (± SEM) and statistical analysis performed by student t-test. Significance level considered at p<0.05 for all comparisons.
Results: Due to the toxic effects of 1 μM DAPA incubation, all experiments were conducted with 100 nM DAPA incubated cells. [Na+]in levels were not significantly changed in any group. Moreover, increased [H+]in level in HG incubation (48-hours) significantly augmented following DAPA treatment (24-hours and 48-hours). However [Zn+2]in levels in HG incubated (24-hours and 48-hours) cells were significantly increased, DAPA treatment had no further effect. In addition, increased [Ca+2]in in HG reduced with DAPA treatment to control values. Importantly, DAPA treatment significantly reduced elevated [ROS]in but did not improve depolarized MMP in HG cardiomyocytes.
Conclusion: In conclusion these results indicate that DAPA treatment restores [H+]in and [ROS]in homeostasis and improve contraction-relaxation activity of the heart in HG conditions.
References
-
1. Hanson RL, Imperatore G, Bennett PH, et al. Components of the “metabolic syndrome” and incidence of type 2 diabetes. Diabetes 2002; 51(10): 3120-7.
-
2. Meigs JB, Larson MG, D’Agostino RB, et al. Coronary artery calcification in type 2 diabetes and insulin resistance: the framingham offspring study. Diabetes Care 2002; 25(8): 1313-1319.
-
3. Fleischman A and Rhodes ET. Management of obesity, insulin resistance and type 2 diabetes in children: consensus and controversy. Diabetes Metab Syndr Obes 2009; 2: 185-202.
-
4. Porte D and Woods SC. Regulation of food intake and body weight in insulin. Diabetologia 1981; 20 Suppl: 274-280.
-
5. Satman I, Yilmaz T, Sengul A, et al. Population-based study of diabetes and risk characteristics in Turkey: results of the turkish diabetes epidemiology study (TURDEP). Diabetes Care 2002; 25(9): 1551-1556.
-
6. Gundogan K, Bayram F, Capak M, et al. Prevalence of metabolic syndrome in the Mediterranean region of Turkey: evaluation of hypertension, diabetes mellitus, obesity, and dyslipidemia. Metab Syndr Relat Disord 2009; 7(5): 427-434.
-
7. Onat A, Yuksel M, Koroglu B, et al. [Turkish Adult Risk Factor Study survey 2012: overall and coronary mortality and trends in the prevalence of metabolic syndrome]. Turk Kardiyol Dern Ars 2013; 41(5): 373-378.
-
8. Rubler S, Dlugash J, Yuceoglu YZ, et al. New type of cardiomyopathy associated with diabetic glomerulosclerosis. Am J Cardiol 1972; 30(6): 595- 602.
-
9. Fein FS, Kornstein LB, Strobeck JE, et al. Altered myocardial mechanics in diabetic rats. Circ Res 1980; 47(6): 922-933.
-
10. Penpargkul S, Schaible T, Yipintsoi T, et al. The effect of diabetes on performance and metabolism of rat hearts. Circ Res 1980; 47(6): 911-921.
-
11. Pierce GN and Russell JC. Regulation of intracellular Ca2+ in the heart during diabetes. Cardiovasc Res 1997; 34(1): 41-47.
-
12. Choi KM, Zhong Y, Hoit BD, et al. Defective intracellular Ca(2+) signaling contributes to cardiomyopathy in Type 1 diabetic rats. Am J Physiol Heart Circ Physiol 2002; 283(4): H1398-1408.
-
13. Ozdemir S, Ugur M, Gurdal H, et al. Treatment with AT(1) receptor blocker restores diabetes-induced alterations in intracellular Ca(2+) transients and contractile function of rat myocardium. Arch Biochem Biophys 2005; 435(1): 166-174.
-
14. Aydemir-Koksoy A, Bilginoglu A, Sariahmetoglu M, et al. Antioxidant treatment protects diabetic rats from cardiac dysfunction by preserving contractile protein targets of oxidative stress. J Nutr Biochem 2010; 21(9): 827-833.
-
15. Ren J, Pulakat L, Whaley-Connell A, et al. Mitochondrial biogenesis in the metabolic syndrome and cardiovascular disease. J Mol Med (Berl) 2010; 88(10): 993-1001.
-
16. Whaley-Connell A and Sowers JR. Oxidative stress in the cardiorenal metabolic syndrome. Curr Hypertens Rep 2012; 14(4): 360-365.
-
17. Ilkun O and Boudina S. Cardiac dysfunction and oxidative stress in the metabolic syndrome: an update on antioxidant therapies. Curr Pharm Des 2013; 19(27): 4806-4817.
-
18. Tuncay E, Okatan EN, Vassort G, et al. ss-blocker timolol prevents arrhythmogenic Ca(2)(+) release and normalizes Ca(2)(+) and Zn(2)(+) dyshomeostasis in hyperglycemic rat heart. PLoS One 2013; 8(7): e71014.
-
19. Tuncay E, Okatan EN, Toy A, et al. Enhancement of cellular antioxidantdefence preserves diastolic dysfunction via regulation of both diastolic Zn2+ and Ca2+ and prevention of RyR2-leak in hyperglycemic cardiomyocytes. Oxid Med Cell Longev 2014; 2014: 290381.
-
20. Han S, Hagan DL, Taylor JR, et al. Dapagliflozin, a selective SGLT2 inhibitor, improves glucose homeostasis in normal and diabetic rats. Diabetes 2008; 57(6): 1723-1729.
-
21. Hansen HH, Jelsing J, Hansen CF, et al. The sodium glucose cotransporter type 2 inhibitor empagliflozin preserves beta-cell mass and restores glucose homeostasis in the male zucker diabetic fatty rat. J Pharmacol Exp Ther 2014; 350(3): 657-664
-
22. Riggs K, Ali H, Taegtmeyer H, et al. The Use of SGLT-2 Inhibitors in Type 2 Diabetes and Heart Failure. Metab Syndr Relat Disord 2015; 13(7): 292-297.
-
23. Martens P, Mathieu C, and Verbrugge FH. Promise of SGLT2 Inhibitors in Heart Failure: Diabetes and Beyond. Curr Treat Options Cardiovasc Med 2017;19(3):23.
-
24. Packer M, Anker SD, Butler J, et al. Effects of Sodium-Glucose Cotransporter 2 Inhibitors for the Treatment of Patients With Heart Failure: Proposal of a Novel Mechanism of Action. JAMA Cardiol 2017;2(9):1025-1029.
-
25. Kosiborod M, Cavender MA, Fu AZ, et al. Lower Risk of Heart Failure and Death in Patients Initiated on Sodium-Glucose Cotransporter-2 Inhibitors Versus Other Glucose-Lowering Drugs: The CVD-REAL Study (Comparative Effectiveness of Cardiovascular Outcomes in New Users of Sodium-Glucose Cotransporter-2 Inhibitors). Circulation 2017;136(3):249-259.
-
26. Lee TM, Chang NC, and Lin SZ. Dapagliflozin, a selective SGLT2 Inhibitor, attenuated cardiac fibrosis by regulating the macrophage polarization via
310.27. Bilginoglu A, Kandilci HB, and Turan B. Intracellular levels of Na(+) and TTXsensitive Na(+) channel current in diabetic rat ventricular cardiomyocytes. Cardiovasc Toxicol 2013;13(2):138-47.
-
28. Yaras N, Ugur M, Ozdemir S, et al. Effects of diabetes on ryanodine receptor Ca release channel (RyR2) and Ca2+ homeostasis in rat heart. Diabetes 2005;54(11):3082-8.
-
29. Panchal SK, Poudyal H, Iyer A, et al. High-carbohydrate high-fat dietinduced metabolic syndrome and cardiovascular remodeling in rats. J Cardiovasc Pharmacol 2011;57(1):51-64.
-
30. Roberts CK, Barnard RJ, Sindhu RK, et al. Oxidative stress and dysregulation of NAD(P)H oxidase and antioxidant enzymes in diet-induced metabolic syndrome. Metabolism 2006; 55(7):928-934.
-
31. Okatan EN, Tuncay E, Hafez G, et al. Profiling of cardiac beta-adrenoceptor subtypes in the cardiac left ventricle of rats with metabolic syndrome: Comparison with streptozotocin-induced diabetic rats. Can J Physiol Pharmacol 2015;93(7):517-525.
-
32. Dutta K, Podolin DA, Davidson MB, et al. Cardiomyocyte dysfunction in sucrose-fed rats is associated with insulin resistance. Diabetes 2001; 50(5): 1186-92.
-
33. George P and McCrimmon RJ. Potential role of non-insulin adjunct therapy in Type 1 diabetes. Diabet Med 2013;30(2):179-188.
-
34. Stone ML, Walker JL, Chisholm D, et al. The addition of rosiglitazone to insulin in adolescents with type 1 diabetes and poor glycaemic control: a randomized-controlled trial. Pediatr Diabetes 2008;9(4 Pt 1):326-334.
-
35. Polsky S and Ellis SL. Obesity, insulin resistance, and type 1 diabetes mellitus. Curr Opin Endocrinol Diabetes Obes 2015;22(4):277-282.
-
36. Ahmadieh H, Ghazal N, and Azar ST. Role of sodium glucose cotransporter-2 inhibitors in type I diabetes mellitus. Diabetes Metab Syndr Obes 2017;10:161-167.
-
37. Ferrannini E, Ramos SJ, Salsali A, et al. Dapagliflozin monotherapy in type 2 diabetic patients with inadequate glycemic control by diet and exercise: a randomized, double-blind, placebo-controlled, phase 3 trial. Diabetes Care 2010; 33(10): 2217-2224.
-
38. Bailey CJ, Iqbal N, T’Joen C, et al. Dapagliflozin monotherapy in drug-naive patients with diabetes: a randomized-controlled trial of low-dose range. Diabetes Obes Metab 2012;14(10): 951-959.
-
39. Strojek K, Yoon KH, Hruba V, et al. Effect of dapagliflozin in patients with type 2 diabetes who have inadequate glycaemic control with glimepiride: a randomized, 24-week, double-blind, placebo-controlled trial. Diabetes Obes Metab 2011; 13(10): 928-938.
-
40. Wilding JP, Charpentier G, Hollander P, et al. Efficacy and safety of canagliflozin in patients with type 2 diabetes mellitus inadequately controlled with metformin and sulphonylurea: a randomised trial. Int J Clin Pract 2013; 67(12): 1267-82.
-
41. Haring HU, Merker L, Seewaldt-Becker E, et al. Empagliflozin as add-on to metformin in patients with type 2 diabetes: a 24-week, randomized, double-blind, placebo-controlled trial. Diabetes Care 2014; 37(6): 1650- 1629.
-
42. Scheen AJ. Pharmacodynamics, efficacy and safety of sodium-glucose cotransporter type 2 (SGLT2) inhibitors for the treatment of type 2 diabetes mellitus. Drugs 2015; 75(1): 33-59.
-
43. Whaley-Connell A and Sowers JR. Is it time to target prehypertension. Cardiovasc Ther 2010; 28(6): 337-338.
-
44. Sattar N, McLaren J, Kristensen SL, et al. SGLT2 Inhibition and cardiovascular events: why did EMPA-REG Outcomes surprise and what were the likely mechanisms? Diabetologia 2016; 59(7): 1333-1339.
SGLT2 İnhibitörü Dapagliflozinin Hiperglisemi-Aracılı Kalp Fonksiyon Bozukluğu Üzerindeki Etkisinin Moleküler Temellerinin İncelenmesi
Year 2018,
Volume: 71 Issue: 3, 131 - 138, 25.12.2018
Belma Turan
Abstract
Amaç: Sodyum glukoz ko-transporter (SGLT) inhibitörlerinin diyabetli bireylerde glukoz re-absorbsiyonunu inhibe ederek kan şekerini düşürdüğü ileri sürülmektedir. Bu inhibitörlerin kalp fonksiyonu üzerindeki etkileri henüz tam olarak bilinmemesine karşın, Na+/H+-değiştokuşçusu (NHE) inhibitörü gibi etkiler gösterebildiği ileri sürülmektedir. Bu çalışmada, SGLT2-inhibitörü Dapagliflozin (DAPA), in vitro olarak sıçan embriyonik hiperglisemik ventriküler hücrelerine (H9c2-hücre hattı) uygulanarak hücre seviyesindeki etki mekanizmasının elektrofizyolojik yöntemler kullanılarak incelenmesi hedeflenmiştir.
Gereç ve Yöntem: H9c2 hücreleri deney koşullarına hazır hale getirildikten sonra, H9c2’ler bir grubu 25 mM glukoz ile 24-saat veya 48-saat 37 °C’de inkübe edilerek hiperglisemik kardiyomiyositler (HG) elde edilmiş, bir diğer grubun inkübasyonu ise 25 mM glukoz ve DAPA (D185360, TORONTO Research Chemicals; 100 nM veya 1 μM) ile aynı sürelerde gerçekleştirilmiştir. Hücreiçi iyon derişimleri ([X]in, [ROS]in ve mitokondri membran potansiyeli, (MMP, X= Na+, Ca2+, H+, Zn2+) ölçümleri hücreler özel floresans boyalarla yüklenerek (DCFDA, FluoZin-3AM, JC-1, SNARF-1AM, FURA-2AM ve SBFI) konfokal mikroskobu ve mikrospektrofluorometre kullanılarak ölçülmüştür. Gruplar arası karşılaştırmalar student t-testi ile gerçekleştirilmiş ve anlamlılık (p) değeri 0,05’den küçük değerler kabul edilmiştir.
Bulgular: Normal ve hiperglisemik hücrelerde 1 μM DAPA uygulamasında toksik etkiler gözlendiğinden, tüm incelemeler 100 nM DAPA uygulaması ile yapılmıştır. [Na+]in değeri bu uygulamalarda değişmezken, HG inkübasyonda (48-saat) istatistiksel olarak anlamlı düzeyde artış olan [H+]in değeri, DAPA uygulaması ile (24-saat ve 48-saat) çok belirgin olarak artmıştır. Buna karşın, HG’li hücrelerde (24-saat ve 48-saat) artmış olan [Zn+2]in değerlerini DAPA uygulaması etkilememiştir. Buna karşın, HG’li hücrelerde (24-saat ve 48-saat) artmış olan [Ca+2]in değerlerinin DAPA uygulaması ile normal değerlere yakın olduğu gözlenmiştir. Bunlara ek olarak, HG koşullarında önemli derecelerde artmış olan [ROS]in değerinin DAPA ile normal değerler civarında gözlendiği, fakat HG sonucu depolarize durumdaki MMP’lerini etkilemediği sonuçları elde edilmiştir.
Sonuç: Sonuç olarak elde edilen verilerimiz, SGLT2 inhibitörlerinin HG hücrelerde, artan [H+]in ve [ROS]in baskılayarak, artmış olan bazal [Ca+2]in’nin düzelmesine ve böylece kalbin kasılma-gevşeme aktivitesinin HG koşullarında normal fonksiyon göstermesine yol açabileceğini işaret etmektedir
Ethical Statement
Etik Kurul Onayı: Etik kurul onayı alınmamıştır.
Hasta Onayı: Hasta onayı alınmamıştır.
Hakem Değerlendirmesi: Editörler kurulu tarafından
değerlendirilmiştir.
Yazarlık Katkıları
Konsept: B.T., Dizayn: B.T., Veri Toplama veya İşleme: A.D.,
Y.O., S.D., N.E., M.T.A., A.A., M.C.D., M.F.E., B.T.Y., M.S.Y., Analiz
veya Yorumlama: Y.O., E.T., Literatür Arama: A.D., Y.O., S.D., N.E.,
M.T.A., A.A., M.C.D., M.F.E., B.T.Y., M.S.Y., Yazan: B.T.
Çıkar Çatışması: Yazarlar tarafından çıkar çatışması
bildirilmemiştir.
Finansal Destek: Bu çalışmanın finansal desteği, TÜBİTAK
SBAG-214S254 nolu projeden sağlanmıştır
References
-
1. Hanson RL, Imperatore G, Bennett PH, et al. Components of the “metabolic syndrome” and incidence of type 2 diabetes. Diabetes 2002; 51(10): 3120-7.
-
2. Meigs JB, Larson MG, D’Agostino RB, et al. Coronary artery calcification in type 2 diabetes and insulin resistance: the framingham offspring study. Diabetes Care 2002; 25(8): 1313-1319.
-
3. Fleischman A and Rhodes ET. Management of obesity, insulin resistance and type 2 diabetes in children: consensus and controversy. Diabetes Metab Syndr Obes 2009; 2: 185-202.
-
4. Porte D and Woods SC. Regulation of food intake and body weight in insulin. Diabetologia 1981; 20 Suppl: 274-280.
-
5. Satman I, Yilmaz T, Sengul A, et al. Population-based study of diabetes and risk characteristics in Turkey: results of the turkish diabetes epidemiology study (TURDEP). Diabetes Care 2002; 25(9): 1551-1556.
-
6. Gundogan K, Bayram F, Capak M, et al. Prevalence of metabolic syndrome in the Mediterranean region of Turkey: evaluation of hypertension, diabetes mellitus, obesity, and dyslipidemia. Metab Syndr Relat Disord 2009; 7(5): 427-434.
-
7. Onat A, Yuksel M, Koroglu B, et al. [Turkish Adult Risk Factor Study survey 2012: overall and coronary mortality and trends in the prevalence of metabolic syndrome]. Turk Kardiyol Dern Ars 2013; 41(5): 373-378.
-
8. Rubler S, Dlugash J, Yuceoglu YZ, et al. New type of cardiomyopathy associated with diabetic glomerulosclerosis. Am J Cardiol 1972; 30(6): 595- 602.
-
9. Fein FS, Kornstein LB, Strobeck JE, et al. Altered myocardial mechanics in diabetic rats. Circ Res 1980; 47(6): 922-933.
-
10. Penpargkul S, Schaible T, Yipintsoi T, et al. The effect of diabetes on performance and metabolism of rat hearts. Circ Res 1980; 47(6): 911-921.
-
11. Pierce GN and Russell JC. Regulation of intracellular Ca2+ in the heart during diabetes. Cardiovasc Res 1997; 34(1): 41-47.
-
12. Choi KM, Zhong Y, Hoit BD, et al. Defective intracellular Ca(2+) signaling contributes to cardiomyopathy in Type 1 diabetic rats. Am J Physiol Heart Circ Physiol 2002; 283(4): H1398-1408.
-
13. Ozdemir S, Ugur M, Gurdal H, et al. Treatment with AT(1) receptor blocker restores diabetes-induced alterations in intracellular Ca(2+) transients and contractile function of rat myocardium. Arch Biochem Biophys 2005; 435(1): 166-174.
-
14. Aydemir-Koksoy A, Bilginoglu A, Sariahmetoglu M, et al. Antioxidant treatment protects diabetic rats from cardiac dysfunction by preserving contractile protein targets of oxidative stress. J Nutr Biochem 2010; 21(9): 827-833.
-
15. Ren J, Pulakat L, Whaley-Connell A, et al. Mitochondrial biogenesis in the metabolic syndrome and cardiovascular disease. J Mol Med (Berl) 2010; 88(10): 993-1001.
-
16. Whaley-Connell A and Sowers JR. Oxidative stress in the cardiorenal metabolic syndrome. Curr Hypertens Rep 2012; 14(4): 360-365.
-
17. Ilkun O and Boudina S. Cardiac dysfunction and oxidative stress in the metabolic syndrome: an update on antioxidant therapies. Curr Pharm Des 2013; 19(27): 4806-4817.
-
18. Tuncay E, Okatan EN, Vassort G, et al. ss-blocker timolol prevents arrhythmogenic Ca(2)(+) release and normalizes Ca(2)(+) and Zn(2)(+) dyshomeostasis in hyperglycemic rat heart. PLoS One 2013; 8(7): e71014.
-
19. Tuncay E, Okatan EN, Toy A, et al. Enhancement of cellular antioxidantdefence preserves diastolic dysfunction via regulation of both diastolic Zn2+ and Ca2+ and prevention of RyR2-leak in hyperglycemic cardiomyocytes. Oxid Med Cell Longev 2014; 2014: 290381.
-
20. Han S, Hagan DL, Taylor JR, et al. Dapagliflozin, a selective SGLT2 inhibitor, improves glucose homeostasis in normal and diabetic rats. Diabetes 2008; 57(6): 1723-1729.
-
21. Hansen HH, Jelsing J, Hansen CF, et al. The sodium glucose cotransporter type 2 inhibitor empagliflozin preserves beta-cell mass and restores glucose homeostasis in the male zucker diabetic fatty rat. J Pharmacol Exp Ther 2014; 350(3): 657-664
-
22. Riggs K, Ali H, Taegtmeyer H, et al. The Use of SGLT-2 Inhibitors in Type 2 Diabetes and Heart Failure. Metab Syndr Relat Disord 2015; 13(7): 292-297.
-
23. Martens P, Mathieu C, and Verbrugge FH. Promise of SGLT2 Inhibitors in Heart Failure: Diabetes and Beyond. Curr Treat Options Cardiovasc Med 2017;19(3):23.
-
24. Packer M, Anker SD, Butler J, et al. Effects of Sodium-Glucose Cotransporter 2 Inhibitors for the Treatment of Patients With Heart Failure: Proposal of a Novel Mechanism of Action. JAMA Cardiol 2017;2(9):1025-1029.
-
25. Kosiborod M, Cavender MA, Fu AZ, et al. Lower Risk of Heart Failure and Death in Patients Initiated on Sodium-Glucose Cotransporter-2 Inhibitors Versus Other Glucose-Lowering Drugs: The CVD-REAL Study (Comparative Effectiveness of Cardiovascular Outcomes in New Users of Sodium-Glucose Cotransporter-2 Inhibitors). Circulation 2017;136(3):249-259.
-
26. Lee TM, Chang NC, and Lin SZ. Dapagliflozin, a selective SGLT2 Inhibitor, attenuated cardiac fibrosis by regulating the macrophage polarization via
310.27. Bilginoglu A, Kandilci HB, and Turan B. Intracellular levels of Na(+) and TTXsensitive Na(+) channel current in diabetic rat ventricular cardiomyocytes. Cardiovasc Toxicol 2013;13(2):138-47.
-
28. Yaras N, Ugur M, Ozdemir S, et al. Effects of diabetes on ryanodine receptor Ca release channel (RyR2) and Ca2+ homeostasis in rat heart. Diabetes 2005;54(11):3082-8.
-
29. Panchal SK, Poudyal H, Iyer A, et al. High-carbohydrate high-fat dietinduced metabolic syndrome and cardiovascular remodeling in rats. J Cardiovasc Pharmacol 2011;57(1):51-64.
-
30. Roberts CK, Barnard RJ, Sindhu RK, et al. Oxidative stress and dysregulation of NAD(P)H oxidase and antioxidant enzymes in diet-induced metabolic syndrome. Metabolism 2006; 55(7):928-934.
-
31. Okatan EN, Tuncay E, Hafez G, et al. Profiling of cardiac beta-adrenoceptor subtypes in the cardiac left ventricle of rats with metabolic syndrome: Comparison with streptozotocin-induced diabetic rats. Can J Physiol Pharmacol 2015;93(7):517-525.
-
32. Dutta K, Podolin DA, Davidson MB, et al. Cardiomyocyte dysfunction in sucrose-fed rats is associated with insulin resistance. Diabetes 2001; 50(5): 1186-92.
-
33. George P and McCrimmon RJ. Potential role of non-insulin adjunct therapy in Type 1 diabetes. Diabet Med 2013;30(2):179-188.
-
34. Stone ML, Walker JL, Chisholm D, et al. The addition of rosiglitazone to insulin in adolescents with type 1 diabetes and poor glycaemic control: a randomized-controlled trial. Pediatr Diabetes 2008;9(4 Pt 1):326-334.
-
35. Polsky S and Ellis SL. Obesity, insulin resistance, and type 1 diabetes mellitus. Curr Opin Endocrinol Diabetes Obes 2015;22(4):277-282.
-
36. Ahmadieh H, Ghazal N, and Azar ST. Role of sodium glucose cotransporter-2 inhibitors in type I diabetes mellitus. Diabetes Metab Syndr Obes 2017;10:161-167.
-
37. Ferrannini E, Ramos SJ, Salsali A, et al. Dapagliflozin monotherapy in type 2 diabetic patients with inadequate glycemic control by diet and exercise: a randomized, double-blind, placebo-controlled, phase 3 trial. Diabetes Care 2010; 33(10): 2217-2224.
-
38. Bailey CJ, Iqbal N, T’Joen C, et al. Dapagliflozin monotherapy in drug-naive patients with diabetes: a randomized-controlled trial of low-dose range. Diabetes Obes Metab 2012;14(10): 951-959.
-
39. Strojek K, Yoon KH, Hruba V, et al. Effect of dapagliflozin in patients with type 2 diabetes who have inadequate glycaemic control with glimepiride: a randomized, 24-week, double-blind, placebo-controlled trial. Diabetes Obes Metab 2011; 13(10): 928-938.
-
40. Wilding JP, Charpentier G, Hollander P, et al. Efficacy and safety of canagliflozin in patients with type 2 diabetes mellitus inadequately controlled with metformin and sulphonylurea: a randomised trial. Int J Clin Pract 2013; 67(12): 1267-82.
-
41. Haring HU, Merker L, Seewaldt-Becker E, et al. Empagliflozin as add-on to metformin in patients with type 2 diabetes: a 24-week, randomized, double-blind, placebo-controlled trial. Diabetes Care 2014; 37(6): 1650- 1629.
-
42. Scheen AJ. Pharmacodynamics, efficacy and safety of sodium-glucose cotransporter type 2 (SGLT2) inhibitors for the treatment of type 2 diabetes mellitus. Drugs 2015; 75(1): 33-59.
-
43. Whaley-Connell A and Sowers JR. Is it time to target prehypertension. Cardiovasc Ther 2010; 28(6): 337-338.
-
44. Sattar N, McLaren J, Kristensen SL, et al. SGLT2 Inhibition and cardiovascular events: why did EMPA-REG Outcomes surprise and what were the likely mechanisms? Diabetologia 2016; 59(7): 1333-1339.