Review
BibTex RIS Cite

Visual Perception of Human Actions in the Perceptual Decision-making Framework

Year 2024, Volume: 11 Issue: 2, 233 - 249, 31.05.2024
https://doi.org/10.31682/ayna.1344345

Abstract

Neurophysiological studies in non-human primates characterize perceptual decision-making as a two-stage process: 1) accumulation of sensory evidence and 2) decision boundary leading to response selection. These studies commonly used random dot motion stimuli and demonstrated that firing rates of neurons in the lateral intraparietal area (LIP) increase and behavioral response times decrease as the coherence of motion stimuli increases. Recent EEG studies in humans have revealed the Centro-Parietal Positivity (CPP) potential, which exhibits similar functional properties to LIP neurons and is associated with the process of accumulating sensory evidence. It has been shown that the parameters of the CPP component carry important information about the decisions made. However, previous studies have mainly used simple and low-level stimuli to understand the process in its most basic form. Whether perceptual decision-making processes generalize to more complex and socially meaningful biological motion stimuli, such as human actions, remains unknown. This review article emphasized the significance of investigating the neurophysiological basis of perceptual decision-making processes involved in the recognition of human actions and presented a compilation of studies on perceptual decision-making conducted with simpler stimuli that have guided and shaped these investigations. In the conclusion section, we talked about the implications of research in this field to the diagnosis and treatment of many psychological and neurological disorders and the development of artificial intelligence technologies that would improve the well-being of humans.

Project Number

27732

References

  • Abdollahi, R. O., Jastorff, J. ve Orban, G. A. (2013). Common and segregated processing of observed actions in human SPL. Cerebral Cortex, 23(11), 2734-2753. https://doi.org/10.1093/cercor/bhs264
  • Bach, D. R., Pryce, C. R. ve Seifritz, E. (2011). The experimental manipulation of uncertainty. Animal Models of Behavioral Analysis, 193-216. https://doi.org/10.1007/978-1-60761-883-6_8
  • Battelli, L., Cavanagh, P. ve Thornton, I. M. (2003). Perception of biological motion in parietal patients. Neuropsychologia, 41(13), 1808-1816. https://doi.org/10.1016/S0028-3932(03)00182-9
  • Beintema, J. A., Georg, K. ve Lappe, M. (2006). Perception of biological motion from limited- lifetime stimuli. Perception & Psychophysics, 68(4), 613-624. https://doi.org/10.3758/BF03208763
  • Blake, R. ve Shiffrar, M. (2007). Perception of human motion. Annual Review of Psychology, 58, 47. https://doi.org/10.1146/annurev.psych.57.102904.190152
  • Blake, R., Turner, L. M., Smoski, M. J., Pozdol, S. L. ve Stone, W. L. (2003). Visual recognition of biological motion is impaired in children with autism. Psychological Science, 14(2), 151-157. https://doi.org/10.1111/1467-9280.01434
  • Carreira, J. ve Zisserman, A. (2017). Quo vadis, action recognition? A new model and the kinetics dataset. 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). https://doi.org/10.1109/cvpr.2017.502
  • Casile, A. ve Giese, M. A. (2005). Critical features for the recognition of biological motion. Journal of Vision, 5(4), 6-6. https://doi.org/10.1167/5.4.6
  • Corbo, D. ve Orban, G. A. (2017). Observing others speak or sing activates Spt and neighboring parietal cortex. Journal of Cognitive Neuroscience, 29(6), 1002-1021. https://doi.org/10.1162/jocn_a_01103
  • Ferri, S., Rizzolatti, G. ve Orban, G. A. (2015). The organization of the posterior parietal cortex devoted to upper limb actions: An fMRI study. Human Brain Mapping, 36(10), 3845-3866. https://doi.org/10.1002/hbm.22882
  • Garcia, J. O. ve Grossman, E. D. (2008). Necessary but not sufficient: Motion perception is required for perceiving biological motion. Vision Research, 48(9), 1144-1149. https://doi.org/10.1016/j.visres.2008.01.027
  • Giese, M. A. ve Poggio, T. (2003). Neural mechanisms for the recognition of biological movements. Nature Reviews Neuroscience, 4(3), 179–192. https://doi.org/10.1038/nrn1057
  • Gold, J. I. ve Shadlen, M. N. (2007). The neural basis of decision making. Annual Review of Neuroscience, 30(1), 535-574. https://doi.org/10.1146/annurev.neuro.29.051605.113038
  • Grossman, E. D. ve Blake, R. (2002). Brain areas active during visual perception of biological motion. Neuron, 35(6), 1167–1175. https://doi.org/10.1016/S0896-6273(02)00897-8
  • Hanks, T. D. ve Summerfield, C. (2017). Perceptual decision making in rodents, monkeys, and humans. Neuron, 93(1), 15–31. https://doi.org/10.1016/j.neuron.2016.12.003
  • Heekeren, H. R., Marrett, S. ve Ungerleider, L. G. (2008). The neural systems that mediate human perceptual decision making. Nature Reviews Neuroscience, 9(6), 467–479. https://doi.org/10.1038/nrn2374
  • Johnson, K. ve Shiffrar, M. (2013). People watching: Social, perceptual, and neurophysiological studies of body perception. Oxford University Press. https://doi.org/10.1093/acprof:oso/9780195393705.001.0001
  • Karpathy, A., Toderici, G., Shetty, S., Leung, T., Sukthankar, R. ve Fei-Fei, L. (2014). Large-scale video classification with Convolutional neural networks. 2014 IEEE Conference on Computer Vision and Pattern Recognition. https://doi.org/10.1109/cvpr.2014.223
  • Kelly, S. P. ve O’Connell, R. G. (2013). Internal and external influences on the rate of sensory evidence accumulation in the human brain. The Journal of Neuroscience, 33(50), 19434–19441. https://doi.org/10.1523/JNEUROSCI.3355-13.2013
  • Kelly, S. P. ve O’Connell, R. G. (2015). The neural processes underlying perceptual decision making in humans: recent progress and future directions. Journal of Physiology-Paris, 109(1-3), 27-37. https://doi.org/10.1016/j.jphysparis.2014.08.003
  • Kim, J., Doop, M. L., Blake, R. ve Park, S. (2005). Impaired visual recognition of biological motion in schizophrenia. Schizophrenia Research, 77(2-3), 299-307. https://doi.org/10.1016/j.schres.2005.04.006
  • Lange, J. ve Lappe, M. (2006). A model of biological motion perception from configural form cues. Journal of Neuroscience, 26(11), 2894-2906. https://doi.org/10.1523/JNEUROSCI.4915-05.2006
  • Lange, J., De Lussanet, M., Kuhlmann, S., Zimmermann, A., Lappe, M., Zwitserlood, P. ve Dobel, C. (2009). Impairments of biological motion perception in congenital prosopagnosia. PLoS One, 4(10), e7414. https://doi.org/10.1371/journal.pone.0007414
  • O’Connell, R. G., Shadlen, M. N., Wong-Lin, K. ve Kelly, S. P. (2018). Bridging neural and computational viewpoints on perceptual decision-making. Trends in Neurosciences, 41(11), 838- 852. https://doi.org/10.1016/j.tins.2018.06.005
  • Oğuz, O. C., Aydın, B., & Ürgen, B. A. (2024). Biological motion perception in the theoretical framework of perceptual decision-making: An event-related potential study. Vision research, 218, 108380. https://doi.org/10.1016/j.visres.2024.108380
  • Pavlova, M. A. (2012). Biological motion processing as a hallmark of social cognition. Cerebral Cortex, 22(5), 981-995. https://doi.org/10.1093/cercor/bhr156
  • Platonov, A. ve Orban, G. A. (2016). Action observation: the less-explored part of higher-order vision. Scientific Reports, 6(1), 1-13. https://doi.org/10.1038/srep36742
  • Platonov, A. ve Orban, G. A. (2017). Not all observed actions are perceived equally. Scientific Reports, 7(1), 1-9. https://doi.org/10.1038/s41598-017-17369-z
  • Ratcliff, R. ve McKoon, G. (2008). The diffusion decision model: Theory and data for two-choice decision tasks. Neural Computation, 20(4), 873-922. https://doi.org/10.1162/neco.2008.12-06-420
  • Rutherford, M. D. ve Kuhlmeier, V. A. (2013). Social perception: Detection and interpretation of animacy, agency, and intention. MIT Press. https://doi.org/10.7551/mitpress/9780262019279.001.0001
  • Salzman, C. D., Murasugi, C. M., Britten, K. H. ve Newsome, W. T. (1992). Microstimulation in visual area MT: effects on direction discrimination performance. Journal of Neuroscience, 12(6), 2331-2355. https://doi.org/10.1523/JNEUROSCI.12-06-02331.1992
  • Saygin, A. P. (2007). Superior temporal and premotor brain areas necessary for biological motion perception. Brain, 130(9), 2452-2461. https://doi.org/10.1093/brain/awm162
  • Smith, P. L. ve Ratcliff, R. (2004). Psychology and neurobiology of simple decisions. Trends in Neurosciences, 27(3), 161-168. https://doi.org/10.1016/j.tins.2004.01.006
  • Thirkettle, M., Benton, C. P. ve Scott-Samuel, N. E. (2009). Contributions of form, motion and task to biological motion perception. Journal of Vision, 9(3), 28-28. https://doi.org/10.1167/9.3.28
  • Thompson, J. C. ve Baccus, W. (2012). Form and motion make independent contributions to the response to biological motion in occipitotemporal cortex. Neuroimage, 59(1), 625-634. https://doi.org/10.1016/j.neuroimage.2011.07.051
  • Thurman, S. M. ve Grossman, E. D. (2008). Temporal “Bubbles” reveal key features for point- light biological motion perception. Journal of Vision, 8(3), 28-28. https://doi.org/10.1167/8.3.28
  • Thurman, S. M., Giese, M. A. ve Grossman, E. D. (2010). Perceptual and computational analysis of critical features for biological motion. Journal of Vision, 10(12), 15-15. https://doi.org/10.1167/10.12.15
  • Tran, D., Bourdev, L., Fergus, R., Torresani, L. ve Paluri, M. (2015). Learning spatiotemporal features with 3D Convolutional networks. 2015 IEEE International Conference on Computer Vision (ICCV). https://doi.org/10.1109/iccv.2015.510
  • Twomey, D. M., Murphy, P. R., Kelly, S. P. ve O'Connell, R. G. (2015). The classic P300 encodes a build‐to‐threshold decision variable. European Journal of Neuroscience, 42(1), 1636-1643. https://doi.org/10.1111/ejn.12936
  • Ürgen, B. A. ve Orban, G. A. (2021). The unique role of parietal cortex in action observation: Functional organization for communicative and manipulative actions. Neuroimage, 237, 118220. https://doi.org/10.1016/j.neuroimage.2021.118220

Algısal Karar Verme Süreçleri Çerçevesinde İnsan Hareketlerini Tanıma

Year 2024, Volume: 11 Issue: 2, 233 - 249, 31.05.2024
https://doi.org/10.31682/ayna.1344345

Abstract

İnsan olmayan primatlarla yapılan nörofizyolojik çalışmalar, algısal karar vermeyi iki aşamalı bir süreçle karakterize etmektedir: 1) duyusal kanıt birikimi (accumulation of sensory evidence), 2) yanıt seçimine yol açan karar sınırı (decision bound). Bu çalışmalar yaygın olarak rastgele nokta hareketi uyaranlarını kullanmış ve hareket uyaranlarının uyumluluğu arttıkça lateral intraparietal bölge (LIP)'deki nöronların ateşleme hızının arttığını ve davranışsal tepki süresinin azaldığını göstermiştir. Son zamanlarda insanlarda yapılan EEG çalışmaları, LIP nöronları ile benzer fonksiyonel özellikler gösteren ve duyusal kanıt birikimi süreci ile ilişkili olan CPP (Centro-Parietal Positivity) olaya ilişkin potansiyelini ortaya çıkarmıştır. CPP bileşeninin parametrelerinin alınan kararlara dair önemli bilgiler taşıdığı gösterilmiştir. Ancak, bugüne kadar yapılan çalışmalar, süreci en temel haliyle anlayabilmek için basit ve düşük seviyeli uyaranlar kullanmıştır. Algısal karar verme süreçlerinin, canlıların ve özellikle de insanların eylemleri gibi daha karmaşık ve sosyal olarak daha anlamlı uyaranlar (biyolojik hareket) işlenirken benzer olup olmayacağı cevabı henüz bilinmeyen bir sorudur. Başka bir deyişle, bugüne kadar yapılan çalışmalarla ortaya çıkarılan algısal karar verme süreçlerinin, uyarandan bağımsız, genel-geçer süreçler olup olmadığı bilinmemektedir. Bu derleme makalede, insan eylemlerinin tanınmasında rol oynayan algısal karar verme süreçleri ve bu süreçlerin nörofizyolojik temellerini araştırılmasının önemi üzerinde durulmuş ve bu çalışmalara yön veren ve daha basit uyaranlar ile yapılmış algısal karar verme çalışmalarının bir derlemesi sunulmuştur. Sonuç bölümünde, bu alanda yapılacak araştırmaların gerek klinik popülasyonlar (psikolojik ve nörolojik rahatsızlıklar) için teşhis ve tedavi geliştirmede, gerekse insan hayatının refahını yükseltecek yapay zekâ teknolojileri geliştirmedeki öneminden bahsedilmiştir.

Supporting Institution

TÜSEB

Project Number

27732

References

  • Abdollahi, R. O., Jastorff, J. ve Orban, G. A. (2013). Common and segregated processing of observed actions in human SPL. Cerebral Cortex, 23(11), 2734-2753. https://doi.org/10.1093/cercor/bhs264
  • Bach, D. R., Pryce, C. R. ve Seifritz, E. (2011). The experimental manipulation of uncertainty. Animal Models of Behavioral Analysis, 193-216. https://doi.org/10.1007/978-1-60761-883-6_8
  • Battelli, L., Cavanagh, P. ve Thornton, I. M. (2003). Perception of biological motion in parietal patients. Neuropsychologia, 41(13), 1808-1816. https://doi.org/10.1016/S0028-3932(03)00182-9
  • Beintema, J. A., Georg, K. ve Lappe, M. (2006). Perception of biological motion from limited- lifetime stimuli. Perception & Psychophysics, 68(4), 613-624. https://doi.org/10.3758/BF03208763
  • Blake, R. ve Shiffrar, M. (2007). Perception of human motion. Annual Review of Psychology, 58, 47. https://doi.org/10.1146/annurev.psych.57.102904.190152
  • Blake, R., Turner, L. M., Smoski, M. J., Pozdol, S. L. ve Stone, W. L. (2003). Visual recognition of biological motion is impaired in children with autism. Psychological Science, 14(2), 151-157. https://doi.org/10.1111/1467-9280.01434
  • Carreira, J. ve Zisserman, A. (2017). Quo vadis, action recognition? A new model and the kinetics dataset. 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). https://doi.org/10.1109/cvpr.2017.502
  • Casile, A. ve Giese, M. A. (2005). Critical features for the recognition of biological motion. Journal of Vision, 5(4), 6-6. https://doi.org/10.1167/5.4.6
  • Corbo, D. ve Orban, G. A. (2017). Observing others speak or sing activates Spt and neighboring parietal cortex. Journal of Cognitive Neuroscience, 29(6), 1002-1021. https://doi.org/10.1162/jocn_a_01103
  • Ferri, S., Rizzolatti, G. ve Orban, G. A. (2015). The organization of the posterior parietal cortex devoted to upper limb actions: An fMRI study. Human Brain Mapping, 36(10), 3845-3866. https://doi.org/10.1002/hbm.22882
  • Garcia, J. O. ve Grossman, E. D. (2008). Necessary but not sufficient: Motion perception is required for perceiving biological motion. Vision Research, 48(9), 1144-1149. https://doi.org/10.1016/j.visres.2008.01.027
  • Giese, M. A. ve Poggio, T. (2003). Neural mechanisms for the recognition of biological movements. Nature Reviews Neuroscience, 4(3), 179–192. https://doi.org/10.1038/nrn1057
  • Gold, J. I. ve Shadlen, M. N. (2007). The neural basis of decision making. Annual Review of Neuroscience, 30(1), 535-574. https://doi.org/10.1146/annurev.neuro.29.051605.113038
  • Grossman, E. D. ve Blake, R. (2002). Brain areas active during visual perception of biological motion. Neuron, 35(6), 1167–1175. https://doi.org/10.1016/S0896-6273(02)00897-8
  • Hanks, T. D. ve Summerfield, C. (2017). Perceptual decision making in rodents, monkeys, and humans. Neuron, 93(1), 15–31. https://doi.org/10.1016/j.neuron.2016.12.003
  • Heekeren, H. R., Marrett, S. ve Ungerleider, L. G. (2008). The neural systems that mediate human perceptual decision making. Nature Reviews Neuroscience, 9(6), 467–479. https://doi.org/10.1038/nrn2374
  • Johnson, K. ve Shiffrar, M. (2013). People watching: Social, perceptual, and neurophysiological studies of body perception. Oxford University Press. https://doi.org/10.1093/acprof:oso/9780195393705.001.0001
  • Karpathy, A., Toderici, G., Shetty, S., Leung, T., Sukthankar, R. ve Fei-Fei, L. (2014). Large-scale video classification with Convolutional neural networks. 2014 IEEE Conference on Computer Vision and Pattern Recognition. https://doi.org/10.1109/cvpr.2014.223
  • Kelly, S. P. ve O’Connell, R. G. (2013). Internal and external influences on the rate of sensory evidence accumulation in the human brain. The Journal of Neuroscience, 33(50), 19434–19441. https://doi.org/10.1523/JNEUROSCI.3355-13.2013
  • Kelly, S. P. ve O’Connell, R. G. (2015). The neural processes underlying perceptual decision making in humans: recent progress and future directions. Journal of Physiology-Paris, 109(1-3), 27-37. https://doi.org/10.1016/j.jphysparis.2014.08.003
  • Kim, J., Doop, M. L., Blake, R. ve Park, S. (2005). Impaired visual recognition of biological motion in schizophrenia. Schizophrenia Research, 77(2-3), 299-307. https://doi.org/10.1016/j.schres.2005.04.006
  • Lange, J. ve Lappe, M. (2006). A model of biological motion perception from configural form cues. Journal of Neuroscience, 26(11), 2894-2906. https://doi.org/10.1523/JNEUROSCI.4915-05.2006
  • Lange, J., De Lussanet, M., Kuhlmann, S., Zimmermann, A., Lappe, M., Zwitserlood, P. ve Dobel, C. (2009). Impairments of biological motion perception in congenital prosopagnosia. PLoS One, 4(10), e7414. https://doi.org/10.1371/journal.pone.0007414
  • O’Connell, R. G., Shadlen, M. N., Wong-Lin, K. ve Kelly, S. P. (2018). Bridging neural and computational viewpoints on perceptual decision-making. Trends in Neurosciences, 41(11), 838- 852. https://doi.org/10.1016/j.tins.2018.06.005
  • Oğuz, O. C., Aydın, B., & Ürgen, B. A. (2024). Biological motion perception in the theoretical framework of perceptual decision-making: An event-related potential study. Vision research, 218, 108380. https://doi.org/10.1016/j.visres.2024.108380
  • Pavlova, M. A. (2012). Biological motion processing as a hallmark of social cognition. Cerebral Cortex, 22(5), 981-995. https://doi.org/10.1093/cercor/bhr156
  • Platonov, A. ve Orban, G. A. (2016). Action observation: the less-explored part of higher-order vision. Scientific Reports, 6(1), 1-13. https://doi.org/10.1038/srep36742
  • Platonov, A. ve Orban, G. A. (2017). Not all observed actions are perceived equally. Scientific Reports, 7(1), 1-9. https://doi.org/10.1038/s41598-017-17369-z
  • Ratcliff, R. ve McKoon, G. (2008). The diffusion decision model: Theory and data for two-choice decision tasks. Neural Computation, 20(4), 873-922. https://doi.org/10.1162/neco.2008.12-06-420
  • Rutherford, M. D. ve Kuhlmeier, V. A. (2013). Social perception: Detection and interpretation of animacy, agency, and intention. MIT Press. https://doi.org/10.7551/mitpress/9780262019279.001.0001
  • Salzman, C. D., Murasugi, C. M., Britten, K. H. ve Newsome, W. T. (1992). Microstimulation in visual area MT: effects on direction discrimination performance. Journal of Neuroscience, 12(6), 2331-2355. https://doi.org/10.1523/JNEUROSCI.12-06-02331.1992
  • Saygin, A. P. (2007). Superior temporal and premotor brain areas necessary for biological motion perception. Brain, 130(9), 2452-2461. https://doi.org/10.1093/brain/awm162
  • Smith, P. L. ve Ratcliff, R. (2004). Psychology and neurobiology of simple decisions. Trends in Neurosciences, 27(3), 161-168. https://doi.org/10.1016/j.tins.2004.01.006
  • Thirkettle, M., Benton, C. P. ve Scott-Samuel, N. E. (2009). Contributions of form, motion and task to biological motion perception. Journal of Vision, 9(3), 28-28. https://doi.org/10.1167/9.3.28
  • Thompson, J. C. ve Baccus, W. (2012). Form and motion make independent contributions to the response to biological motion in occipitotemporal cortex. Neuroimage, 59(1), 625-634. https://doi.org/10.1016/j.neuroimage.2011.07.051
  • Thurman, S. M. ve Grossman, E. D. (2008). Temporal “Bubbles” reveal key features for point- light biological motion perception. Journal of Vision, 8(3), 28-28. https://doi.org/10.1167/8.3.28
  • Thurman, S. M., Giese, M. A. ve Grossman, E. D. (2010). Perceptual and computational analysis of critical features for biological motion. Journal of Vision, 10(12), 15-15. https://doi.org/10.1167/10.12.15
  • Tran, D., Bourdev, L., Fergus, R., Torresani, L. ve Paluri, M. (2015). Learning spatiotemporal features with 3D Convolutional networks. 2015 IEEE International Conference on Computer Vision (ICCV). https://doi.org/10.1109/iccv.2015.510
  • Twomey, D. M., Murphy, P. R., Kelly, S. P. ve O'Connell, R. G. (2015). The classic P300 encodes a build‐to‐threshold decision variable. European Journal of Neuroscience, 42(1), 1636-1643. https://doi.org/10.1111/ejn.12936
  • Ürgen, B. A. ve Orban, G. A. (2021). The unique role of parietal cortex in action observation: Functional organization for communicative and manipulative actions. Neuroimage, 237, 118220. https://doi.org/10.1016/j.neuroimage.2021.118220
There are 40 citations in total.

Details

Primary Language Turkish
Subjects Cognitive and Computational Psychology (Other), Biological Psychology (Other)
Journal Section Review Articles
Authors

Burcu A. Ürgen 0000-0001-9664-0309

Şeyda Evsen 0000-0002-4803-706X

Project Number 27732
Publication Date May 31, 2024
Submission Date August 16, 2023
Acceptance Date May 6, 2024
Published in Issue Year 2024 Volume: 11 Issue: 2

Cite

APA Ürgen, B. A., & Evsen, Ş. (2024). Algısal Karar Verme Süreçleri Çerçevesinde İnsan Hareketlerini Tanıma. AYNA Klinik Psikoloji Dergisi, 11(2), 233-249. https://doi.org/10.31682/ayna.1344345