Research Article
BibTex RIS Cite

Super and Strong γ H-Lindel¨ofness in Hereditary m-Spaces

Year 2024, Volume: 14 Issue: 2, 54 - 64, 31.07.2024
https://izlik.org/JA72YG88SU

Abstract

Let (X, m, H) be a hereditary m-space and γ : m → P(X) be a γ-operation
on m. A subset A of X is said to be γH-Lindel¨of relative to X [1] if for every cover
{Uα : α ∈ ∆} of A by m-open sets of X, there exists a countable subset ∆0 of ∆ such
that A \ ∪{γ(Uα) : α ∈ ∆0} ∈ H. In this paper, we define and investigate two kinds of
strong forms of “γ H-Lindel¨of relative to X”.

References

  • [1] A. Al-Omari, T. Noiri, Generalizations of Lindelof spaces via a hereditary classes, Acta Univ. Sapientiae Math., 13(2), 2021, 281-291 .
  • [2] H. Ogata, Operations on topological spaces and associated topology, Math. Japan., 36, 1991, 175-184.
  • [3] V. Popa, T. Noiri, On M-continuous functions, An. Univ. ”Dunarea de Jos” Galati, Ser. Mat. Fiz. Mec. Teor., 43(23), 2000, 31–41.
  • [4] T. Noiri, A unified theory for generalizations of compact spaces, Anal. Univ. Sci. Budapest., 54, 2011, 79–96.
  • 5] S. Lugojan, Generalized topology, Stud. Cerc, Mat., 34, 1982, 348-360.
  • [6] A. Cs´asz´ar, ´ Modification of generalized topologies via hereditary classes, Acta Math. Hungar., 115(1-2), 2007, 29-35.
  • [7] A. Al-Omari, S. Modak, T. Noiri, On θ-modifications of generalized topologies via hereditary classes, Commun. Korean Math. Soc., 31(4), 2016, 857- 868.
  • [8] A. Al-Omari, T. Noiri, Operators in minimal spaces with hereditary classes, Mathematica, 61(84)(2), 2019, 101-110.
  • [9] A. Al-Omari, T. Noiri, Properties of γH-compact spaces with hereditary classes, Atti della Accademia Peloritana dei Pericolanti, Classe di Scienze Fisiche, Matematiche e Naturali, 98(2), 2020, 1-11.
  • [10] H. Maki, K.C. Rao, A. Nagoor Gani, On generalizing semi-open and preopen sets, Pure Appl. Math. Sci., 49, 1999, 17–29.
  • [11] K. Kuratowski, Topology, I, Academic Press, New York, 1966.
  • [12] R. Vaidyanathaswani, The localization theory in set-topology, Proc. Indian Acad. Sci., 20, 1945, 51–62.
  • [13] D. Jankovi´c, T. R. Hamlett, New topologies from old via ideals, Amer. Math. Monthly, 97(4), 1990, 295–310.

Year 2024, Volume: 14 Issue: 2, 54 - 64, 31.07.2024
https://izlik.org/JA72YG88SU

Abstract

References

  • [1] A. Al-Omari, T. Noiri, Generalizations of Lindelof spaces via a hereditary classes, Acta Univ. Sapientiae Math., 13(2), 2021, 281-291 .
  • [2] H. Ogata, Operations on topological spaces and associated topology, Math. Japan., 36, 1991, 175-184.
  • [3] V. Popa, T. Noiri, On M-continuous functions, An. Univ. ”Dunarea de Jos” Galati, Ser. Mat. Fiz. Mec. Teor., 43(23), 2000, 31–41.
  • [4] T. Noiri, A unified theory for generalizations of compact spaces, Anal. Univ. Sci. Budapest., 54, 2011, 79–96.
  • 5] S. Lugojan, Generalized topology, Stud. Cerc, Mat., 34, 1982, 348-360.
  • [6] A. Cs´asz´ar, ´ Modification of generalized topologies via hereditary classes, Acta Math. Hungar., 115(1-2), 2007, 29-35.
  • [7] A. Al-Omari, S. Modak, T. Noiri, On θ-modifications of generalized topologies via hereditary classes, Commun. Korean Math. Soc., 31(4), 2016, 857- 868.
  • [8] A. Al-Omari, T. Noiri, Operators in minimal spaces with hereditary classes, Mathematica, 61(84)(2), 2019, 101-110.
  • [9] A. Al-Omari, T. Noiri, Properties of γH-compact spaces with hereditary classes, Atti della Accademia Peloritana dei Pericolanti, Classe di Scienze Fisiche, Matematiche e Naturali, 98(2), 2020, 1-11.
  • [10] H. Maki, K.C. Rao, A. Nagoor Gani, On generalizing semi-open and preopen sets, Pure Appl. Math. Sci., 49, 1999, 17–29.
  • [11] K. Kuratowski, Topology, I, Academic Press, New York, 1966.
  • [12] R. Vaidyanathaswani, The localization theory in set-topology, Proc. Indian Acad. Sci., 20, 1945, 51–62.
  • [13] D. Jankovi´c, T. R. Hamlett, New topologies from old via ideals, Amer. Math. Monthly, 97(4), 1990, 295–310.
There are 13 citations in total.

Details

Primary Language English
Subjects Mathematics Education, Science Education, Science and Mathematics Education (Other)
Journal Section Research Article
Authors

Ahmad Al-omari

Hanan Al-saadi

Takashi Noiri

Publication Date July 31, 2024
IZ https://izlik.org/JA72YG88SU
Published in Issue Year 2024 Volume: 14 Issue: 2

Cite

APA Al-omari, A., Al-saadi, H., & Noiri, T. (2024). Super and Strong γ H-Lindel¨ofness in Hereditary m-Spaces. Azerbaijan Journal of Mathematics, 14(2), 54-64. https://izlik.org/JA72YG88SU
AMA 1.Al-omari A, Al-saadi H, Noiri T. Super and Strong γ H-Lindel¨ofness in Hereditary m-Spaces. AZJM. 2024;14(2):54-64. https://izlik.org/JA72YG88SU
Chicago Al-omari, Ahmad, Hanan Al-saadi, and Takashi Noiri. 2024. “Super and Strong γ H-Lindel¨ofness in Hereditary M-Spaces”. Azerbaijan Journal of Mathematics 14 (2): 54-64. https://izlik.org/JA72YG88SU.
EndNote Al-omari A, Al-saadi H, Noiri T (July 1, 2024) Super and Strong γ H-Lindel¨ofness in Hereditary m-Spaces. Azerbaijan Journal of Mathematics 14 2 54–64.
IEEE [1]A. Al-omari, H. Al-saadi, and T. Noiri, “Super and Strong γ H-Lindel¨ofness in Hereditary m-Spaces”, AZJM, vol. 14, no. 2, pp. 54–64, July 2024, [Online]. Available: https://izlik.org/JA72YG88SU
ISNAD Al-omari, Ahmad - Al-saadi, Hanan - Noiri, Takashi. “Super and Strong γ H-Lindel¨ofness in Hereditary M-Spaces”. Azerbaijan Journal of Mathematics 14/2 (July 1, 2024): 54-64. https://izlik.org/JA72YG88SU.
JAMA 1.Al-omari A, Al-saadi H, Noiri T. Super and Strong γ H-Lindel¨ofness in Hereditary m-Spaces. AZJM. 2024;14:54–64.
MLA Al-omari, Ahmad, et al. “Super and Strong γ H-Lindel¨ofness in Hereditary M-Spaces”. Azerbaijan Journal of Mathematics, vol. 14, no. 2, July 2024, pp. 54-64, https://izlik.org/JA72YG88SU.
Vancouver 1.Al-omari A, Al-saadi H, Noiri T. Super and Strong γ H-Lindel¨ofness in Hereditary m-Spaces. AZJM [Internet]. 2024 July 1;14(2):54-6. Available from: https://izlik.org/JA72YG88SU