Research Article
BibTex RIS Cite

Convergence of Iterates of Normal Operators in L^2 Spaces

Year 2024, Volume: 14 Issue: 2, 181 - 188, 31.07.2024

Abstract

Let (Ω, Σ, m) be a measure space with m being an σ-finite positive measure
and let N be a normal operator on L2(Ω, Σ, m). In this note, we study strong and almost
everywhere convergences of the sequences {ϕ (N)nf}n∈N in L2(Ω, Σ, m) spaces, where
ϕ is a continuous function on the spectrum of N.

References

  • [1] A. Bellow, R. Jones, J. Rosenblatt, Almost everywhere convergence of convolutions powers, Erg. Theory and Dynam. Systems, 14, 1994, 415-432.
  • [2] G. Cohen, Ch. Cuny, M. Lin, Almost everywhere convergence of powers of some positive Lp−contractions, J. Math. Anal. Appl., 420, 2014, 1129-1153.
  • [3] J.B. Conway, A Course in Functional Analysis, Grad. Texts in Math., Springer-Verlag, 1985.
  • [4] J-P Conze, M. Lin, Almost everywhere convergence of convolutions powers on compact Abelian groups, Ann. I’nstitut Henri Poincar´e, 49, 2013, 550-568.
  • 5] R. Jones, J. Rosenblatt, A. Tempelman, Ergodic theorems for convolutions of a measure on a group, Illinois J. Math., 38, 1994, 521-553.
  • [6] U. Krengel, Ergodic Theorems, Walter de Gruyter, Berlin, New York, 1985.
  • [7] R. Larsen, Banach Algebras, Marcel-Dekker Inc., New York, 1973.
  • [8] M. Lin, On the uniform ergodic theorem, Proc. Amer. Math. Soc., 43, 1974,337-340.
  • [9] H. Mustafayev, Convergence of iterates of convolution operators in Lp spaces, Bull. Sci. Math., 152, 2019, 61-92.
  • [10] H. Mustafayev, On the convergence of iterates of convolution operators in Banach spaces, Math. Scand., 126, 2020, 339-366.

Year 2024, Volume: 14 Issue: 2, 181 - 188, 31.07.2024

Abstract

References

  • [1] A. Bellow, R. Jones, J. Rosenblatt, Almost everywhere convergence of convolutions powers, Erg. Theory and Dynam. Systems, 14, 1994, 415-432.
  • [2] G. Cohen, Ch. Cuny, M. Lin, Almost everywhere convergence of powers of some positive Lp−contractions, J. Math. Anal. Appl., 420, 2014, 1129-1153.
  • [3] J.B. Conway, A Course in Functional Analysis, Grad. Texts in Math., Springer-Verlag, 1985.
  • [4] J-P Conze, M. Lin, Almost everywhere convergence of convolutions powers on compact Abelian groups, Ann. I’nstitut Henri Poincar´e, 49, 2013, 550-568.
  • 5] R. Jones, J. Rosenblatt, A. Tempelman, Ergodic theorems for convolutions of a measure on a group, Illinois J. Math., 38, 1994, 521-553.
  • [6] U. Krengel, Ergodic Theorems, Walter de Gruyter, Berlin, New York, 1985.
  • [7] R. Larsen, Banach Algebras, Marcel-Dekker Inc., New York, 1973.
  • [8] M. Lin, On the uniform ergodic theorem, Proc. Amer. Math. Soc., 43, 1974,337-340.
  • [9] H. Mustafayev, Convergence of iterates of convolution operators in Lp spaces, Bull. Sci. Math., 152, 2019, 61-92.
  • [10] H. Mustafayev, On the convergence of iterates of convolution operators in Banach spaces, Math. Scand., 126, 2020, 339-366.
There are 10 citations in total.

Details

Primary Language English
Subjects Mathematics Education, Science Education, Science and Mathematics Education (Other)
Journal Section Research Article
Authors

Heybetkulu Mustafayev

Submission Date December 13, 2023
Acceptance Date February 3, 2024
Publication Date July 31, 2024
Published in Issue Year 2024 Volume: 14 Issue: 2

Cite

APA Mustafayev, H. (2024). Convergence of Iterates of Normal Operators in L^2 Spaces. Azerbaijan Journal of Mathematics, 14(2), 181-188. https://izlik.org/JA99HK46PD
AMA 1.Mustafayev H. Convergence of Iterates of Normal Operators in L^2 Spaces. AZJM. 2024;14(2):181-188. https://izlik.org/JA99HK46PD
Chicago Mustafayev, Heybetkulu. 2024. “Convergence of Iterates of Normal Operators in L^2 Spaces”. Azerbaijan Journal of Mathematics 14 (2): 181-88. https://izlik.org/JA99HK46PD.
EndNote Mustafayev H (July 1, 2024) Convergence of Iterates of Normal Operators in L^2 Spaces. Azerbaijan Journal of Mathematics 14 2 181–188.
IEEE [1]H. Mustafayev, “Convergence of Iterates of Normal Operators in L^2 Spaces”, AZJM, vol. 14, no. 2, pp. 181–188, July 2024, [Online]. Available: https://izlik.org/JA99HK46PD
ISNAD Mustafayev, Heybetkulu. “Convergence of Iterates of Normal Operators in L^2 Spaces”. Azerbaijan Journal of Mathematics 14/2 (July 1, 2024): 181-188. https://izlik.org/JA99HK46PD.
JAMA 1.Mustafayev H. Convergence of Iterates of Normal Operators in L^2 Spaces. AZJM. 2024;14:181–188.
MLA Mustafayev, Heybetkulu. “Convergence of Iterates of Normal Operators in L^2 Spaces”. Azerbaijan Journal of Mathematics, vol. 14, no. 2, July 2024, pp. 181-8, https://izlik.org/JA99HK46PD.
Vancouver 1.Mustafayev H. Convergence of Iterates of Normal Operators in L^2 Spaces. AZJM [Internet]. 2024 July 1;14(2):181-8. Available from: https://izlik.org/JA99HK46PD