Research Article
BibTex RIS Cite
Year 2024, Volume: 14 Issue: 2, 160 - 180, 31.07.2024

Abstract

References

  • [1] N. Assila, K. Samir, B. Moalige, Controlled K-fusion frame for Hilbert spaces, Moroccan J. Pure Appl. Anal., 7, 2021, 116–133.
  • [2] R. Balan, P.G. Casazza, D. Edidin, On signal reconstruction without phase, Appl. Comput. Harmon. Anal., 20, 2006, 345–356.
  • [3] R. Balan, P.G. Casazza, D. Edidin, G. Kutyniok, A new identity for Parseval frames, Proc. Am. Math. Soc., 135, 2007, 1007–1015.
  • [4] B. Behera, Density of frame wavelets and tight frame wavelets in local fields, Complex Anal. Oper. Theory, 15(6), 2021, Paper No. 102.
  • [5] C. Cabrelli, U. Molter, D. Su´arez, Multi-orbital frames through model spaces, Complex Anal. Oper. Theory 15(1), 2021, Paper No. 16.
  • [6] P.G. Casazza, J. Kovacvic, Equal-norm tight frames with erasures, Adv. Comput. Math., 18(2-4), 2003, 387–430.
  • [7] M.H. Faroughi, A. Rahimi, R. Ahmadi, gc-Fusion frames, Methods Funct. Anal. Topology, 16(2), 2010, 112—119.
  • [8] L. Gavruta, On the duality of fusion frames, J. Math. Anal. Appl., 333, 2007, 871–879.
  • [9] P. Gavruta, On some identities and inequalities for frames in Hilbert spaces, J. Math. Anal. Appl., 321, 2006, 467–478.
  • [10] D.F. Li, W.C. Sun, Some equalities and inequalities for generalized frame, Chinese J. Contemp. Math., 29(3), 2008, 301–308.
  • [11] J.Z. Li, Y.C. Zhu, Some equalities and inequalities for g-Bessel sequences in Hilbert spaces, Appl. Math. Lett., 25(11), 2012, 1601–1607.
  • [12] C. Mezzat, S. Kabbaj, K-b-Frames for Hilbert Spaces and the bAdjoint Operator, Sahand Communications in Mathematical Analysis, https://doi.org/10.22130/scma.2023.2012970.1485.
  • [13] A. Najati, A. Rahimi, Generalized frames in Hilbert spaces, Bull. Iranian Math. Soc., 35(1), 2009, 97–109.
  • [14] A. Rahimi, A. Najati, Y.N. Dehghan, Continuous frame in Hilbert space, Methods Funct. Anal. Topology, 12(2), 2006, 170–182.
  • [15] W. Sun, G-Frames and g-Riesz bases, J. Math. Anal. Appl., 322(1), 2006, 437–452.
  • [16] X.H. Yang, D.F. Li, Some new equalities and inequalities for G-frames and their dual frames, Acta Math. Sinica (Chin. Ser.), 52(5), 2009, 1033–1040.
  • [17] R. Zarghami Farfar, V. Sadri, R. Ahmadi, R. Ahmadi, Some identities and inequalities for G-fusion frame, Probl. Anal. Issues Anal., 9(2)(27), 2020, 152–162.
  • [18] X. Zhu, G. Wu, A note on some equalities for frames in Hilbert spaces, Appl. Math. Lett., 23(7), 2010, 788–790.

Some Inequalities-Equalities Concerning Continuous Generalized Fusion Frames in Hilbert Spaces

Year 2024, Volume: 14 Issue: 2, 160 - 180, 31.07.2024

Abstract

Continuous generalized fusion frame theory was recently introduced by Rahimi et al. [14]. Several equalities and inequalities have been obtained for frame, fusion generalized fusion frame, among others. In the present paper, we continue and extend these results to obtain some important identities and inequalities in the case of continuous generalized fusion frame, Parseval continuous generalized fusion frame, λ-tight continuous generalized fusion frame. Moreover, we obtain some new inequalities for the alternate
dual continuous generalized fusion frame. Finally, we obtain frame operator of a pair of
Bessel continuous generalized fusion mapping and we derive some results about resolution
of identity.

References

  • [1] N. Assila, K. Samir, B. Moalige, Controlled K-fusion frame for Hilbert spaces, Moroccan J. Pure Appl. Anal., 7, 2021, 116–133.
  • [2] R. Balan, P.G. Casazza, D. Edidin, On signal reconstruction without phase, Appl. Comput. Harmon. Anal., 20, 2006, 345–356.
  • [3] R. Balan, P.G. Casazza, D. Edidin, G. Kutyniok, A new identity for Parseval frames, Proc. Am. Math. Soc., 135, 2007, 1007–1015.
  • [4] B. Behera, Density of frame wavelets and tight frame wavelets in local fields, Complex Anal. Oper. Theory, 15(6), 2021, Paper No. 102.
  • [5] C. Cabrelli, U. Molter, D. Su´arez, Multi-orbital frames through model spaces, Complex Anal. Oper. Theory 15(1), 2021, Paper No. 16.
  • [6] P.G. Casazza, J. Kovacvic, Equal-norm tight frames with erasures, Adv. Comput. Math., 18(2-4), 2003, 387–430.
  • [7] M.H. Faroughi, A. Rahimi, R. Ahmadi, gc-Fusion frames, Methods Funct. Anal. Topology, 16(2), 2010, 112—119.
  • [8] L. Gavruta, On the duality of fusion frames, J. Math. Anal. Appl., 333, 2007, 871–879.
  • [9] P. Gavruta, On some identities and inequalities for frames in Hilbert spaces, J. Math. Anal. Appl., 321, 2006, 467–478.
  • [10] D.F. Li, W.C. Sun, Some equalities and inequalities for generalized frame, Chinese J. Contemp. Math., 29(3), 2008, 301–308.
  • [11] J.Z. Li, Y.C. Zhu, Some equalities and inequalities for g-Bessel sequences in Hilbert spaces, Appl. Math. Lett., 25(11), 2012, 1601–1607.
  • [12] C. Mezzat, S. Kabbaj, K-b-Frames for Hilbert Spaces and the bAdjoint Operator, Sahand Communications in Mathematical Analysis, https://doi.org/10.22130/scma.2023.2012970.1485.
  • [13] A. Najati, A. Rahimi, Generalized frames in Hilbert spaces, Bull. Iranian Math. Soc., 35(1), 2009, 97–109.
  • [14] A. Rahimi, A. Najati, Y.N. Dehghan, Continuous frame in Hilbert space, Methods Funct. Anal. Topology, 12(2), 2006, 170–182.
  • [15] W. Sun, G-Frames and g-Riesz bases, J. Math. Anal. Appl., 322(1), 2006, 437–452.
  • [16] X.H. Yang, D.F. Li, Some new equalities and inequalities for G-frames and their dual frames, Acta Math. Sinica (Chin. Ser.), 52(5), 2009, 1033–1040.
  • [17] R. Zarghami Farfar, V. Sadri, R. Ahmadi, R. Ahmadi, Some identities and inequalities for G-fusion frame, Probl. Anal. Issues Anal., 9(2)(27), 2020, 152–162.
  • [18] X. Zhu, G. Wu, A note on some equalities for frames in Hilbert spaces, Appl. Math. Lett., 23(7), 2010, 788–790.
There are 18 citations in total.

Details

Primary Language English
Subjects Mathematics Education, Science Education, Science and Mathematics Education (Other)
Journal Section Research Article
Authors

Nadia Assila This is me

Samir Kabbej

Ouafaa Bouftouh This is me

Chaimae Mezzat This is me

Choonkil Park

Publication Date July 31, 2024
Published in Issue Year 2024 Volume: 14 Issue: 2

Cite

APA Assila, N., Kabbej, S., Bouftouh, O., Mezzat, C., et al. (2024). Some Inequalities-Equalities Concerning Continuous Generalized Fusion Frames in Hilbert Spaces. Azerbaijan Journal of Mathematics, 14(2), 160-180.
AMA Assila N, Kabbej S, Bouftouh O, Mezzat C, Park C. Some Inequalities-Equalities Concerning Continuous Generalized Fusion Frames in Hilbert Spaces. AZJM. July 2024;14(2):160-180.
Chicago Assila, Nadia, Samir Kabbej, Ouafaa Bouftouh, Chaimae Mezzat, and Choonkil Park. “Some Inequalities-Equalities Concerning Continuous Generalized Fusion Frames in Hilbert Spaces”. Azerbaijan Journal of Mathematics 14, no. 2 (July 2024): 160-80.
EndNote Assila N, Kabbej S, Bouftouh O, Mezzat C, Park C (July 1, 2024) Some Inequalities-Equalities Concerning Continuous Generalized Fusion Frames in Hilbert Spaces. Azerbaijan Journal of Mathematics 14 2 160–180.
IEEE N. Assila, S. Kabbej, O. Bouftouh, C. Mezzat, and C. Park, “Some Inequalities-Equalities Concerning Continuous Generalized Fusion Frames in Hilbert Spaces”, AZJM, vol. 14, no. 2, pp. 160–180, 2024.
ISNAD Assila, Nadia et al. “Some Inequalities-Equalities Concerning Continuous Generalized Fusion Frames in Hilbert Spaces”. Azerbaijan Journal of Mathematics 14/2 (July 2024), 160-180.
JAMA Assila N, Kabbej S, Bouftouh O, Mezzat C, Park C. Some Inequalities-Equalities Concerning Continuous Generalized Fusion Frames in Hilbert Spaces. AZJM. 2024;14:160–180.
MLA Assila, Nadia et al. “Some Inequalities-Equalities Concerning Continuous Generalized Fusion Frames in Hilbert Spaces”. Azerbaijan Journal of Mathematics, vol. 14, no. 2, 2024, pp. 160-8.
Vancouver Assila N, Kabbej S, Bouftouh O, Mezzat C, Park C. Some Inequalities-Equalities Concerning Continuous Generalized Fusion Frames in Hilbert Spaces. AZJM. 2024;14(2):160-8.