Research Article
BibTex RIS Cite
Year 2024, Volume: 14 Issue: 2, 181 - 188, 31.07.2024

Abstract

References

  • [1] A. Bellow, R. Jones, J. Rosenblatt, Almost everywhere convergence of convolutions powers, Erg. Theory and Dynam. Systems, 14, 1994, 415-432.
  • [2] G. Cohen, Ch. Cuny, M. Lin, Almost everywhere convergence of powers of some positive Lp−contractions, J. Math. Anal. Appl., 420, 2014, 1129-1153.
  • [3] J.B. Conway, A Course in Functional Analysis, Grad. Texts in Math., Springer-Verlag, 1985.
  • [4] J-P Conze, M. Lin, Almost everywhere convergence of convolutions powers on compact Abelian groups, Ann. I’nstitut Henri Poincar´e, 49, 2013, 550-568.
  • 5] R. Jones, J. Rosenblatt, A. Tempelman, Ergodic theorems for convolutions of a measure on a group, Illinois J. Math., 38, 1994, 521-553.
  • [6] U. Krengel, Ergodic Theorems, Walter de Gruyter, Berlin, New York, 1985.
  • [7] R. Larsen, Banach Algebras, Marcel-Dekker Inc., New York, 1973.
  • [8] M. Lin, On the uniform ergodic theorem, Proc. Amer. Math. Soc., 43, 1974,337-340.
  • [9] H. Mustafayev, Convergence of iterates of convolution operators in Lp spaces, Bull. Sci. Math., 152, 2019, 61-92.
  • [10] H. Mustafayev, On the convergence of iterates of convolution operators in Banach spaces, Math. Scand., 126, 2020, 339-366.

Convergence of Iterates of Normal Operators in L^2 Spaces

Year 2024, Volume: 14 Issue: 2, 181 - 188, 31.07.2024

Abstract

Let (Ω, Σ, m) be a measure space with m being an σ-finite positive measure
and let N be a normal operator on L2(Ω, Σ, m). In this note, we study strong and almost
everywhere convergences of the sequences {ϕ (N)nf}n∈N in L2(Ω, Σ, m) spaces, where
ϕ is a continuous function on the spectrum of N.

References

  • [1] A. Bellow, R. Jones, J. Rosenblatt, Almost everywhere convergence of convolutions powers, Erg. Theory and Dynam. Systems, 14, 1994, 415-432.
  • [2] G. Cohen, Ch. Cuny, M. Lin, Almost everywhere convergence of powers of some positive Lp−contractions, J. Math. Anal. Appl., 420, 2014, 1129-1153.
  • [3] J.B. Conway, A Course in Functional Analysis, Grad. Texts in Math., Springer-Verlag, 1985.
  • [4] J-P Conze, M. Lin, Almost everywhere convergence of convolutions powers on compact Abelian groups, Ann. I’nstitut Henri Poincar´e, 49, 2013, 550-568.
  • 5] R. Jones, J. Rosenblatt, A. Tempelman, Ergodic theorems for convolutions of a measure on a group, Illinois J. Math., 38, 1994, 521-553.
  • [6] U. Krengel, Ergodic Theorems, Walter de Gruyter, Berlin, New York, 1985.
  • [7] R. Larsen, Banach Algebras, Marcel-Dekker Inc., New York, 1973.
  • [8] M. Lin, On the uniform ergodic theorem, Proc. Amer. Math. Soc., 43, 1974,337-340.
  • [9] H. Mustafayev, Convergence of iterates of convolution operators in Lp spaces, Bull. Sci. Math., 152, 2019, 61-92.
  • [10] H. Mustafayev, On the convergence of iterates of convolution operators in Banach spaces, Math. Scand., 126, 2020, 339-366.
There are 10 citations in total.

Details

Primary Language English
Subjects Mathematics Education, Science Education, Science and Mathematics Education (Other)
Journal Section Research Article
Authors

Heybetkulu Mustafayev

Publication Date July 31, 2024
Submission Date December 13, 2023
Acceptance Date February 3, 2024
Published in Issue Year 2024 Volume: 14 Issue: 2

Cite

APA Mustafayev, H. (2024). Convergence of Iterates of Normal Operators in L^2 Spaces. Azerbaijan Journal of Mathematics, 14(2), 181-188.
AMA Mustafayev H. Convergence of Iterates of Normal Operators in L^2 Spaces. AZJM. July 2024;14(2):181-188.
Chicago Mustafayev, Heybetkulu. “Convergence of Iterates of Normal Operators in L^2 Spaces”. Azerbaijan Journal of Mathematics 14, no. 2 (July 2024): 181-88.
EndNote Mustafayev H (July 1, 2024) Convergence of Iterates of Normal Operators in L^2 Spaces. Azerbaijan Journal of Mathematics 14 2 181–188.
IEEE H. Mustafayev, “Convergence of Iterates of Normal Operators in L^2 Spaces”, AZJM, vol. 14, no. 2, pp. 181–188, 2024.
ISNAD Mustafayev, Heybetkulu. “Convergence of Iterates of Normal Operators in L^2 Spaces”. Azerbaijan Journal of Mathematics 14/2 (July 2024), 181-188.
JAMA Mustafayev H. Convergence of Iterates of Normal Operators in L^2 Spaces. AZJM. 2024;14:181–188.
MLA Mustafayev, Heybetkulu. “Convergence of Iterates of Normal Operators in L^2 Spaces”. Azerbaijan Journal of Mathematics, vol. 14, no. 2, 2024, pp. 181-8.
Vancouver Mustafayev H. Convergence of Iterates of Normal Operators in L^2 Spaces. AZJM. 2024;14(2):181-8.