Review
BibTex RIS Cite

Asmanın (Vitis spp.) Fungal Hastalıklarla Teşvik Edilen Savunma Mekanizması

Year 2018, Volume: 47 Issue: 2, 45 - 55, 30.11.2018

Abstract

Ülkemiz
bağcılık için elverişli iklim ve toprak yapısına sahiptir. Ülkemizde ve dünyada
en yaygın yetiştiriciliği yapılan tür Vitis
vinifera
L.’dir. Şaraplık, sofralık ve kurutmalık tüketime uygun bu türe
ait çeşitlerin neredeyse tamamı fungal hastalıklara hassastır. Bu nedenle
hastalıklarla mücadelede yoğun fungusit kullanımı zorunlu hale gelmiştir. Aşırı
fungusit kullanımı nedeniyle insan ve çevre sağlığı olumsuz etkilenmektedir.
Dünyadaki en önemli asma hastalıkları fungal patojenlerin sebep olduğu külleme
(Uncinula necator syn. Erysiphe necator) ve mildiyö (Plasmopora viticola)’dür. Bağcılıkta bu
hastalıklara dayanıklı çeşitlerin kullanımı ekonomik ve çevresel yönden önemli
yararlar sağlayacaktır. Bitkide hastalıklara dayanıklılık bakımından bitki
savunma mekanizması hayati öneme sahiptir. Hastalıkların kontrolü için bitkinin
sahip olduğu savunma mekanizmasını harekete geçirmeye yönelik uygulamalar
tarımsal üretimin sürdürülebilirliği ve insan–çevre sağlığını korumak açısından
oldukça önemlidir. Bu makalede asmanın fungal hastalıklarla harekete geçen
savunma mekanizmasının nasıl çalıştığı anlatılmaktadır.


References

  • Aghnoum, R. and Niks, R.E., 2012. Compatible Puccinia hordei infection in barley induces basal defense to subsequent infection by Blumeria graminis. Physiol. Mol. Plant Pathol. 77:17–22.
  • Allegre, M., Heloir, M.C., Trouvelot, S., Daire, X., Pugin, A., Wendehenne, D. and Adrian, M., 2009. Are Grapevine Stomata Involved in the elicitor–induced protection against downy mildew? MPMI 22:977–986.
  • Amrine, K.C.H., Blanco–Ulate B., Riaz, S., Pap, D., Jones, L., Figueroa–Balderas, R., Walker, M.A. and Cantu, D., 2015. Comparative transcriptomics of Central Asian Vitis vinifera accessions reveals distinFct defense strategies against powdery mildew. Hrtic. Res. 2:15037.
  • Anonim, 2017. National Center for Biotechnology Information (NCBI) Database (https://www.ncbi.nlm.nih.gov) (Erişim Tarihi: 27.07.2017).
  • Anonim, 2014. Grape Genome Browser. (http://www.genoscope.cns.fr) (Erişim Tarihi: 25.07.2014).
  • Balbi, V. and Devoto, A., 2008. Jasmonate signalling network in Arabidopsis thaliana: Crucial regulatory nodes and new physiological scenarios. New Phytol. 177:301–318.
  • Belhadj, A., Saigne, C., Telef, N., Cluzet, S., Bouscaut, J., Corio–Costet, M.F. and Merillon, J.M., 2006. Methyl Jasmonate Induces Defense Responses in Grapevine and Triggers Protection against Erysiphe necator. J. Agric. Food Chem. 54:9119–9125
  • Bent, A.F. and Mackey, D., 2007. Elicitors, effectors and R genes: the new paradigm and a lifetime supply of questions. Annu. Rev. Phytopathology 45:399–436.
  • Blanco–Portales, R., Medina–Escobar, N., Lo´pez–Ra´ez, J.A., Gonza´les–Reyes, J.A., Villalba, J.M., Moyano, E., Caballero, J.L. and Mun˜oz–Blanco, J., 2002. Cloning, expression and immuno localization pattern of a cinnamyl elicitors alcohol dehydrogenase gene from strawberry (Fragaria ananassa cv. Chandler). J. Exp. Bot. 53:1723–1734.
  • Boller, T. and Felix, G., 2009. A renaissance of: perception of microbe–associated molecular patterns and danger signals by pattern–recognition receptors. Annu. Rev. Plant. Biol. 60:379–406.
  • Boubals, D., 1961. Etude des causes de la résistance desVitacées a l’oidiumde la vigne Uncinula necator (Schw. Burr.) et leur mode de transmission hèrèditaire. Ann. L’Amél des Plantes 11:401–500.
  • Böhm, H., Albert, I., Fan, L. and Nürnberger, T.R.A., 2014. Immune receptor complexes at the plant surface. Curr. Opin. Plant Biol. 20:47–54.
  • Busam, G., Kassemeyer, H.H. and Matern, U., 1997. Differential expression of chitinases in Vitis vinifera L. responding to systemic acquired resistance activators or fungal challenge. Plant Physiol. 115:1029–1038.
  • Buschges, R., Hollricher, K., Panstruga, R., Simons, G. and Wolter, M., 1997. The barley Mlo gene: a novel control element of plant pathogen resistance. Cell. 88:695–705.
  • Chen, H., Seguin, P., Archambault, A., Constan, L. and Jabaji, S., 2009. Gene expression and isoflavone concentrations in soybean sprouts treated with chitosan. Crop. Sci. 49:224–236.
  • Chong, J., Henanff, G.L., Bertsch, C. and Walter, B., 2007. Identification, expression analysis and characterization of defense and signaling genes in Vitis vinifera. Plant Physiol. Biochem. 46:1–13.
  • Coffeen, W.C. and Wolpert, T.J., 2004. Purification and characterization of serine proteases that exhibit caspase–like activity are associated with programmed cell death in Avena sativa. The Plant Cell 16:857–873.
  • Cohen, Y., Reuveni, M. and Baider, A., 1999. Local and systemic activity of BABA (DL–3–aminobutyric acid) against Plasmopara viticola in grapevines. Eur. J. Plant Pathol. 105:351–361.
  • Dagostin, S., Scharer, H.J., Pertot, I. and Tamm, L., 2011. Are there alternatives to copper for controlling grapevine downy mildew in organic viticulture? Crop Prot. 30:776–788.
  • Dangl, J.L., Horvath, D.M. and Staskawicz, B.J., 2013. Pivoting the plant immune system from dissection to deployment. Science 341:746–751.
  • Doares, S.H., Syrovets, T., Weiler, E.W. and Ryan, C.A., 1995. Oligogalacturonides and chitosan activate plant defensive genes through the octadecanoid pathway. Proc. Natl. Acad. Sci. 92:4095–4098.
  • Dubreuil–Maurizi, C., Trouvelot, S., Frettinger, P., Pugin, A., Wendehenne, D. and Poinssot, B., 2010. Beta–aminobutyric acid primes on NADPH oxidase–dependent reactive oxygen species production during grapevine–triggered immunity. Mol. Plant–Microbe In. 23:1012–1021.
  • Elmer, P.A.G. and Reglinski, T., 2006. Biosuppression of Botrytis cinerea in grapes. Plant. Pathol. 55:155–177.
  • Eom, S.H., Kim, H. and Hyun, T.K., 2016. The cinnamyl alcohol dehydrogenase (CAD) gene family in flax (Linum usitatissimum L.): Insight from expression profiling of cads induced by elicitors in cultured flax cells. Arch. Biol. Sci. 68(3):603–612.
  • Fabro, G., Di Rienzo, J.A., Voigt, C.A., Savchenko, T., Dehesh, K., Somerville, S. and Alvarez, M.E., 2008. Genome–wide expression profiling Arabidopsis at the stage of Golovinomyces cichoracearum haustorium formation. Plant. Physiol. 146:1421–1439.
  • Feechan, A., Kabbara, S. and Dry, I.B., 2011. Mechanisms of powdery mildew resistance in the Vitaceae family. Mol. Plant. Pathol. 12:263–274.
  • Figueriedo, A., Monteiro, F. and Sebastiana, M., 2014. Subtilisin–like serine proteases in plant–pathogen recognition and immune priming: a perspective. Front Plant Sci. 5:739.
  • Flor, H.H., 1971. Current status of the gene–for–gene concept. Annu. Rev. Phytopathol. 9:275–296.
  • Fung, R.W., Gonzalo, M., Fekete, 2008. Powdery mildew induces defense–oriented reprogramming of the transcriptome in a susceptible but not in a resistant grapevine. Plant Physiol. 146:236–249.
  • Gao, F., Shu, X., Ali, M., Howard, S., Li, N. and Winterhagen, P., 2010. A functional EDS1 ortholog is differentially regulated in powdery mildew resistant and susceptible grapevines and complements an Arabidopsis EDS1 mutant. Planta 231:1037–1047.
  • Gao, F., Dai, R., Pike, S., Qiu, W. and Gassmann, W., 2014. Functions of EDS1–like and PAD4 genes in grapevine defenses against powdery mildew. Plant Mol. Biol. 86:381–393.
  • Golldack, D., Vera, P. and Dietz, K.J., 2003. Expression of subtilisin–like serine proteases in Arabidopsis thaliana is cell–specific and responds to jasmonic acid and heavy metals with developmental differences. Physiol. Plantarum 118:64–73.
  • Goodman, R.N. and A. Novacky, 1994. The hypersensitive reaction in plants to pathogens. A resistance phenomenon. American Phytopathological Society Press. ISBN: 978–0–89054–165–4.
  • Gorbatenko, I.Y., Onischuk, J.A., Krivtsov, G.G. and Vanyushin, B.F., 1996. Eliciting and growth–regulating effects of chitosan on plants. Biol. Bull. Russ. Acad. Sci. 23:327–330.
  • Gupta, P.K., 2005. Molecular biology and genetic engineering. Rastogi Publications. pp:268–269.
  • Hamiduzzaman, M.M., Jakeb, G., Barnavon, L., Neuhaus, J.M. and Mauch–Mani, B., 2005. β–Aminobutyric acid–induced resistance against downy mildew in grapevine acts through the potentiation of callose formation and jasmonic acid signaling. Mol. Plant–Microbe Interac. 18:819–829.
  • Hammerschmidt, R., 1999. Phytoalexins: what have we learned after 60 years? Annu. Rev. Phytopathol. 37:285–306.
  • Harm, A., Kassemeyer, H.H., Seibicke, T. and Regner, F., 2011. Evaluation of chemical and natural resistance inducers against downy mildew (Plasmopara viticola) in grapevine. Am. J. Enol. Vitic. 62:184–192.
  • Herrmann, K.M., 1995. The shikimate pathway: early steps in the biosynthesis of aromatic compounds. The Plant Cell 7:907–919. (https://www.ncbi.nlm.nih.gov).
  • Iriti, M. and Faoro, F., 2007. Review of innate and specific immunity in plants and animals. Mycopathologia 164:57–64.
  • Iriti, M. and Faoro, F., 2009. Chitosan as a MAMP, searching for a PRR. Plant Signal Behav. 4:66–68.
  • Iriti, M., Vitalini, S., Di Tommaso, G., D’Amico, S., Borgo, M. and Faoro, F., 2011. New chitosan formulation prevents grapevine powdery mildew infection and improves polyphenol content and free radical scavenging activity of grape and wine. Aust. J. Grape Wine Res. 17:263–269.
  • Lee, H.I., Leon, J. and Raskin, I., 1995. Biosynthesis and mechanism of salicylic acid. Proc. Natl. Acad. Sci. USA 92:4076–4079.
  • Lindermayr, C., Saalbach, G., Bahnweg, G. and Durner, J., 2006. Differential inhibition of Arabidopsis methionine adenosyltransferases by protein S–nitrosylation. J. Biol. Chem. 281:4285–4291.
  • Liu, Y., Jin, H., Yang, K., Kim, C., Baker, B. and Zhang, S., 2003. Interaction between two mitogen–activated protein kinases during tobacco defense signaling. Plant J. 34:149–160.
  • Liu, S–L., Wu, J., Zhang, P., Hasi, G., Huang, Y., Lu, J. and Zhang, Y.L., 2016. Response of phytohormones and correlation of SAR signal pathway genes to the different resistance levels of grapevine against Plasmopora viticola infection. Plant Physiol. Bioch. 107:56–66.
  • Maher, E.A., Bate, N.J., Ni, W., Elkind, Y., Dixon, R.A. and Lamb, C.J., 1994. Increased disease susceptibility of transgenic tobacco plants with suppressed levels of preformed phenylpropanoid products. Proc. Nat. Acad. Sci. USA. 91:7802–7806.
  • Mei, C., Qi, M., Sheng, G. and Yang, Y., 2006. Inducible overexpression of a rice allene oxide synthase gene increases the endogenous jasmonic acid level, PR gene expression, and host resistance to fungal infection. Mol. Plant–Microbe Interact. 19:1127–1137
  • Meng, X. and Tian, S., 2009. Effects of preharvest application of antagonistic yeast combined with chitosan on decay and quality of harvested table grape fruit. J. Sci. Food Agric. 89:1838–1842.
  • Meng, X.Z. and Zhang, S.Q., 2013. MAPK cascades in plant disease resistance signaling. Annu. Rev. Phytopathol. 51:245–266.
  • Nandeeshkumar, P., Sudisha, J., Ramachandra, K.K., Prakash, H.S., Niranjana, S.R. and Shekar, S.H., 2008. Chitosan induced resistance to downy mildew in sunflower caused by Plasmopara halstedii. Physiol. Mol. Plant P. 72:188–194.
  • Nürnberger, T. and Kufner, I., 2011. The role of the plant plasma membrane in microbial sensing and innate immunity. Plant Cell Monogr. 19:471–483.
  • Orlowska, E., Fiil, A., Kirk, H.G., Llorente, B. and Cvitanich, C., 2011. Differential gene induction in resistant and susceptible potato cultivars at early stages of infection by Phytophthora infestans. Plant Cell. Rep. 31:187–203.
  • Park, J.S., Kim, J.B., Hahn, B.S., Kim, K.H., Ha, S.H., Kim, J.B. and Kim, Y.H., 2004. EST analysis of genes involved in secondary metabolism in Camellia sinensis (tea), using suppression subtractive hybridization. Plant Sci. 166:953–961.
  • Pieterse, C.M.J., Leon–Reyes, A., Var der Ent, S. and Van Weers, S.C., 2009. Networking by small–molecule hormones in plant immunity. Nat. Chem. Biol. 5:308–316.
  • Qiu, W., Feechan, A. and Dry, I., 2015. Current understanding of grapevine defense mechanisms against the biotrophic fungus (Erysiphe necator), the causal agent of powdery mildew disease. Hort. Res. 2:15–20.
  • Rohde, A., Morreel, K. and Ralph, J., 2004. Molecular phenotyping of the Pal1 and Pal2 mutants of Arabidopsis thaliana reveals farreaching consequences on phenylpropanoid, amino acid and carbohydrate mechanisms. The Plant Cell.16:2749–2771.
  • Roje, S., 2006. S–adenosyl–L–methionine: beyond the universal methyl donor group. Phytochemistry 67:1686–1698.
  • Romanazzi, G., Mlikota Gabler, T. and Smilanick, J.L., 2006. Preharvest chitosan and postharvest UV irradiation treatments suppress gray mold of table grapes. Plant Dis. 90:445–450.
  • Romanazzi, G., Mlikota Gabler, F., Margosan, D.A., Mackey, B.E. and Smilanick, J.L., 2009. Effect of acid used to dissolve chitosan on its film forming properties and its ability to control postharvest gray mold of table grapes. Phytopathology 99:1028–1036.
  • Rosli, H.G., Zheng, Y., Pombo, M.A., Zhong, S., Bombarely, A., Fei, Z., Collmer, A. and Martin, G.B., 2013. Transcriptomics–based screen for genes induced by flagellin and repressed by pathogen effectors identifies a cell wall–associated kinase involved in plant immunity. Genome Biol. 14:R139.
  • Ross, A.F., 1961. Systemic acquired resistance induced by localized virus infections in plants. Virology 13:340–358.
  • Rossard, S., Luini, E., Perault, J.M., Bonmort, J. and Roblin, G., 2006. Early changes in membrane permeability, production of oxidative burst and modify cation of PAL activity induced by ergosterol in cotyledons of Mimosa pudica. J. Exp. Bot. 57:1245–1252.
  • Schmidt, K., Pflugmacher, M., Klages S., Maser, A., Mock, A. and Stahl, D.J., 2008. Accumulation of the hormone abscisic acid (ABA) at the infection site of the fungus Cercospora beticola supports the role of ABA as a repressor of plant defence in sugar beet. Mol. Plant Pathol. 9:661–673.
  • Segonzac, C. and Zipfel, C., 2011. Activation of plant pattern–recognition receptors by bacteria. Curr. Opin. Microbiol. 14:54–61
  • Sela–Buurlage, M.B., Ponstein, A.S., Bres–Vloemans, S.A., Melchers, L.S., van der Elzen, P.M.J. and Cornelissen, B.J.C., 1993. Only specific tobacco chitinases and β–1,3–glucanases exhibit antifungal activity. Plant Physiol. 101:857–863.
  • Shoresh, M., Harman, G.E. and Mastouri, F., 2010. Induced systemic resistance and plant responses to fungal biocontrol agents. Annu. Rev. Phytopathol. 48:21–43.
  • Thomma, B.P.H.J., Nürnberger, T. and Joosten, M., 2011. Of PAMPs and effectors: the blurred PTI–ETI dichotomy. Plant Cell 23:4–15.
  • Tornero, P., Conejero, V. and Vera, P., 1996. Primary structure and expression of pathogen–induced proteases (PR–P69) in tomato plants: similarity of functional domains to subtilisin–like endoproteases. Proc. Nat. Acad. Sci. USA. 93:6332–6337.
  • Vallad, G.E. and Goodman, R.M., 2004. Systemic acquired resistance and induced systemic resistance in conventional agriculture. Crop Sci. 44:1920–1934.
  • van der Hoorn, R.A.L. and Jones, J.D.G., 2004. The plant proteolytic machinery and its role in defence. Curr. Opin. Plant Biol. 7, 400–407.
  • van Loon, L.C., Bakker P.A. and Pieterse C.M., 1998. Systemic resistance induced by rhizosphere bacteria. Annu. Rev. Phytopathol. 36:453–483.
  • Vidhyasekaran, P., 2007. Fungal pathogenesis in plants and crops: molecular biology and host defense mechanisms. CRC Press/Taylor Francis Group, Boca Raton. p 510.
  • Vidhyasekaran, P., 2014. PAMP signals in plant innate immunity: signal perception and transduction. Springer, Dordrecht. p.442.
  • Vidhyasekaran, P., 2016. Switching on plant innate immunity signaling systems: bioenergiing and molecular manipulation of PAMP–PIMP–PRR signaling complex. ISBN: 978–3–319–26118–8 (e Book).
  • Walsh, P., Bursac, D., Law, Y.C., Cyr, D. and Lithgow, T., 2004. The Jprotein family: modulating protein assembly, disassembly and translocation. EMBO Reports 5:567–571.
  • Walters, D.R., 2009. Are plants in the field already induced? Implications for practical disease control. Crop Prot. 28:459–465.
  • Wang, C., Zien, C., Afitlhile, M., Welti, R., Hildebrand, D.F. and Wang, X., 2000. Involvement of phospholipase D in wound–induced accumulation of jasmonic acid in Arabidopsis. Plant Cell 12:2237–2246.
  • Wang, K., Liaoa, Y., Kanb, J., Hanb, L. and Zheng, Y., 2015. Response of direct or priming defense against Botrytis cinerea to methyl jasmonate treatment at different concentrations in grape berries. Int. J. Food Microbiol. 194:32–39.
  • Weng, K., Li, Z.Q., Liu, R.Q., Wang, L., Wang, Y.J. and Xu, Y., 2014. Transcriptome of Erysiphe necator infected Vitis pseudoreticulata leaves provides insight into grapevine resistance to powdery mildew. Hort. Res. 1:14049.
  • Xiang, T., Zong, N., Zou, Y., Wu, Y., Zhang, J., Xing, W., Li, Y., Tang, X., Zhu, L., Chai, J. and Zhou, J.M., 2008. Pseudomonas syringae effector AvrPto blocks innate immunity by targeting receptor kinases. Curr. Biol. 18:74–80.
  • Xu, Z.S., Xia, L.Q., Chen, M., Cheng, X.G., Zhang, R.Y., Li, L.C., Zhao, Y.X., Lu, Y., Ni, Z.Y., Liu, L., Qiu, Z.G. and Ma, Y.Z., 2007. Isolation and molecular characterization of the Triticum aestivum L. ethylene–responsive factor 1 (TaERF1) that increases multiple stress tolerance. Plant Mol. Biol. 65:719–732.
  • Yang, Y., J. Shah and D.F. Klessig, 1997. Signal perception and transduction in plant defense responses. In: Genes & Developmenment II: 1621–1639. Cold Spring Herbor Laboratory Press. ISSN: 0890–9369.
  • Yang, K.Y., Liu, Y.D. and Zhang, S.Q., 2001. Activation of a mitogen–activated protein kinase pathway is involved in disease resistance in tobacco. Proc. Natl. Acad. Sci. USA 98:741–746.
  • Zhang, L., Kars, I., Essenstam, B., Liebrand, T.W.H., Wagemakers, L., Elberse, J., Tagkalaki, P., Tjoitang, D., Ackerveken, G. and van Kan, J.A.L., 2014. Fungal endoploygalacturonases are recognized as microbe–associated molecular patterns by the Arabidopsis receptor–like protein Responsiveness to Botyrtys Polygalacturonases 1. Plant Physiol. 164:353–364

Grapevine (Vitis spp.) Defence Mechanism Triggered With Fungal Disease

Year 2018, Volume: 47 Issue: 2, 45 - 55, 30.11.2018

Abstract

Our country has climate and soil structure suitable
for viticulture. Vitis vinifera L. is
the most common species in our country and in the world. Varieties of this
species are suitable for consumption of wine, table and raisin but almost all
of them are highly susceptible to fungal diseases. For this reason, applying
very intensive fungicide to control diseases has become compulsory. Due to
using a very high amount of fungicide, human and environmental health are affected
adversely. The most important diseases of grapevine worldwide are powdery
mildew (Uncinula necator syn. Erysiphe necator) and downy mildew (Plasmopora viticola), which were caused
by the fungal pathogens. The use of resistance cultivars will result in
significant economic and environmental benefits. Plant defense mechanism has
vital importance in resistance to plant diseases. Practices to mobilize the
defense mechanism of the plant for disease control are important in many
respects such as sustainable agricultural production and the protection of
human–environment health. This article explains how the defense mechanism of
grapevine that acts with fungal disease works

References

  • Aghnoum, R. and Niks, R.E., 2012. Compatible Puccinia hordei infection in barley induces basal defense to subsequent infection by Blumeria graminis. Physiol. Mol. Plant Pathol. 77:17–22.
  • Allegre, M., Heloir, M.C., Trouvelot, S., Daire, X., Pugin, A., Wendehenne, D. and Adrian, M., 2009. Are Grapevine Stomata Involved in the elicitor–induced protection against downy mildew? MPMI 22:977–986.
  • Amrine, K.C.H., Blanco–Ulate B., Riaz, S., Pap, D., Jones, L., Figueroa–Balderas, R., Walker, M.A. and Cantu, D., 2015. Comparative transcriptomics of Central Asian Vitis vinifera accessions reveals distinFct defense strategies against powdery mildew. Hrtic. Res. 2:15037.
  • Anonim, 2017. National Center for Biotechnology Information (NCBI) Database (https://www.ncbi.nlm.nih.gov) (Erişim Tarihi: 27.07.2017).
  • Anonim, 2014. Grape Genome Browser. (http://www.genoscope.cns.fr) (Erişim Tarihi: 25.07.2014).
  • Balbi, V. and Devoto, A., 2008. Jasmonate signalling network in Arabidopsis thaliana: Crucial regulatory nodes and new physiological scenarios. New Phytol. 177:301–318.
  • Belhadj, A., Saigne, C., Telef, N., Cluzet, S., Bouscaut, J., Corio–Costet, M.F. and Merillon, J.M., 2006. Methyl Jasmonate Induces Defense Responses in Grapevine and Triggers Protection against Erysiphe necator. J. Agric. Food Chem. 54:9119–9125
  • Bent, A.F. and Mackey, D., 2007. Elicitors, effectors and R genes: the new paradigm and a lifetime supply of questions. Annu. Rev. Phytopathology 45:399–436.
  • Blanco–Portales, R., Medina–Escobar, N., Lo´pez–Ra´ez, J.A., Gonza´les–Reyes, J.A., Villalba, J.M., Moyano, E., Caballero, J.L. and Mun˜oz–Blanco, J., 2002. Cloning, expression and immuno localization pattern of a cinnamyl elicitors alcohol dehydrogenase gene from strawberry (Fragaria ananassa cv. Chandler). J. Exp. Bot. 53:1723–1734.
  • Boller, T. and Felix, G., 2009. A renaissance of: perception of microbe–associated molecular patterns and danger signals by pattern–recognition receptors. Annu. Rev. Plant. Biol. 60:379–406.
  • Boubals, D., 1961. Etude des causes de la résistance desVitacées a l’oidiumde la vigne Uncinula necator (Schw. Burr.) et leur mode de transmission hèrèditaire. Ann. L’Amél des Plantes 11:401–500.
  • Böhm, H., Albert, I., Fan, L. and Nürnberger, T.R.A., 2014. Immune receptor complexes at the plant surface. Curr. Opin. Plant Biol. 20:47–54.
  • Busam, G., Kassemeyer, H.H. and Matern, U., 1997. Differential expression of chitinases in Vitis vinifera L. responding to systemic acquired resistance activators or fungal challenge. Plant Physiol. 115:1029–1038.
  • Buschges, R., Hollricher, K., Panstruga, R., Simons, G. and Wolter, M., 1997. The barley Mlo gene: a novel control element of plant pathogen resistance. Cell. 88:695–705.
  • Chen, H., Seguin, P., Archambault, A., Constan, L. and Jabaji, S., 2009. Gene expression and isoflavone concentrations in soybean sprouts treated with chitosan. Crop. Sci. 49:224–236.
  • Chong, J., Henanff, G.L., Bertsch, C. and Walter, B., 2007. Identification, expression analysis and characterization of defense and signaling genes in Vitis vinifera. Plant Physiol. Biochem. 46:1–13.
  • Coffeen, W.C. and Wolpert, T.J., 2004. Purification and characterization of serine proteases that exhibit caspase–like activity are associated with programmed cell death in Avena sativa. The Plant Cell 16:857–873.
  • Cohen, Y., Reuveni, M. and Baider, A., 1999. Local and systemic activity of BABA (DL–3–aminobutyric acid) against Plasmopara viticola in grapevines. Eur. J. Plant Pathol. 105:351–361.
  • Dagostin, S., Scharer, H.J., Pertot, I. and Tamm, L., 2011. Are there alternatives to copper for controlling grapevine downy mildew in organic viticulture? Crop Prot. 30:776–788.
  • Dangl, J.L., Horvath, D.M. and Staskawicz, B.J., 2013. Pivoting the plant immune system from dissection to deployment. Science 341:746–751.
  • Doares, S.H., Syrovets, T., Weiler, E.W. and Ryan, C.A., 1995. Oligogalacturonides and chitosan activate plant defensive genes through the octadecanoid pathway. Proc. Natl. Acad. Sci. 92:4095–4098.
  • Dubreuil–Maurizi, C., Trouvelot, S., Frettinger, P., Pugin, A., Wendehenne, D. and Poinssot, B., 2010. Beta–aminobutyric acid primes on NADPH oxidase–dependent reactive oxygen species production during grapevine–triggered immunity. Mol. Plant–Microbe In. 23:1012–1021.
  • Elmer, P.A.G. and Reglinski, T., 2006. Biosuppression of Botrytis cinerea in grapes. Plant. Pathol. 55:155–177.
  • Eom, S.H., Kim, H. and Hyun, T.K., 2016. The cinnamyl alcohol dehydrogenase (CAD) gene family in flax (Linum usitatissimum L.): Insight from expression profiling of cads induced by elicitors in cultured flax cells. Arch. Biol. Sci. 68(3):603–612.
  • Fabro, G., Di Rienzo, J.A., Voigt, C.A., Savchenko, T., Dehesh, K., Somerville, S. and Alvarez, M.E., 2008. Genome–wide expression profiling Arabidopsis at the stage of Golovinomyces cichoracearum haustorium formation. Plant. Physiol. 146:1421–1439.
  • Feechan, A., Kabbara, S. and Dry, I.B., 2011. Mechanisms of powdery mildew resistance in the Vitaceae family. Mol. Plant. Pathol. 12:263–274.
  • Figueriedo, A., Monteiro, F. and Sebastiana, M., 2014. Subtilisin–like serine proteases in plant–pathogen recognition and immune priming: a perspective. Front Plant Sci. 5:739.
  • Flor, H.H., 1971. Current status of the gene–for–gene concept. Annu. Rev. Phytopathol. 9:275–296.
  • Fung, R.W., Gonzalo, M., Fekete, 2008. Powdery mildew induces defense–oriented reprogramming of the transcriptome in a susceptible but not in a resistant grapevine. Plant Physiol. 146:236–249.
  • Gao, F., Shu, X., Ali, M., Howard, S., Li, N. and Winterhagen, P., 2010. A functional EDS1 ortholog is differentially regulated in powdery mildew resistant and susceptible grapevines and complements an Arabidopsis EDS1 mutant. Planta 231:1037–1047.
  • Gao, F., Dai, R., Pike, S., Qiu, W. and Gassmann, W., 2014. Functions of EDS1–like and PAD4 genes in grapevine defenses against powdery mildew. Plant Mol. Biol. 86:381–393.
  • Golldack, D., Vera, P. and Dietz, K.J., 2003. Expression of subtilisin–like serine proteases in Arabidopsis thaliana is cell–specific and responds to jasmonic acid and heavy metals with developmental differences. Physiol. Plantarum 118:64–73.
  • Goodman, R.N. and A. Novacky, 1994. The hypersensitive reaction in plants to pathogens. A resistance phenomenon. American Phytopathological Society Press. ISBN: 978–0–89054–165–4.
  • Gorbatenko, I.Y., Onischuk, J.A., Krivtsov, G.G. and Vanyushin, B.F., 1996. Eliciting and growth–regulating effects of chitosan on plants. Biol. Bull. Russ. Acad. Sci. 23:327–330.
  • Gupta, P.K., 2005. Molecular biology and genetic engineering. Rastogi Publications. pp:268–269.
  • Hamiduzzaman, M.M., Jakeb, G., Barnavon, L., Neuhaus, J.M. and Mauch–Mani, B., 2005. β–Aminobutyric acid–induced resistance against downy mildew in grapevine acts through the potentiation of callose formation and jasmonic acid signaling. Mol. Plant–Microbe Interac. 18:819–829.
  • Hammerschmidt, R., 1999. Phytoalexins: what have we learned after 60 years? Annu. Rev. Phytopathol. 37:285–306.
  • Harm, A., Kassemeyer, H.H., Seibicke, T. and Regner, F., 2011. Evaluation of chemical and natural resistance inducers against downy mildew (Plasmopara viticola) in grapevine. Am. J. Enol. Vitic. 62:184–192.
  • Herrmann, K.M., 1995. The shikimate pathway: early steps in the biosynthesis of aromatic compounds. The Plant Cell 7:907–919. (https://www.ncbi.nlm.nih.gov).
  • Iriti, M. and Faoro, F., 2007. Review of innate and specific immunity in plants and animals. Mycopathologia 164:57–64.
  • Iriti, M. and Faoro, F., 2009. Chitosan as a MAMP, searching for a PRR. Plant Signal Behav. 4:66–68.
  • Iriti, M., Vitalini, S., Di Tommaso, G., D’Amico, S., Borgo, M. and Faoro, F., 2011. New chitosan formulation prevents grapevine powdery mildew infection and improves polyphenol content and free radical scavenging activity of grape and wine. Aust. J. Grape Wine Res. 17:263–269.
  • Lee, H.I., Leon, J. and Raskin, I., 1995. Biosynthesis and mechanism of salicylic acid. Proc. Natl. Acad. Sci. USA 92:4076–4079.
  • Lindermayr, C., Saalbach, G., Bahnweg, G. and Durner, J., 2006. Differential inhibition of Arabidopsis methionine adenosyltransferases by protein S–nitrosylation. J. Biol. Chem. 281:4285–4291.
  • Liu, Y., Jin, H., Yang, K., Kim, C., Baker, B. and Zhang, S., 2003. Interaction between two mitogen–activated protein kinases during tobacco defense signaling. Plant J. 34:149–160.
  • Liu, S–L., Wu, J., Zhang, P., Hasi, G., Huang, Y., Lu, J. and Zhang, Y.L., 2016. Response of phytohormones and correlation of SAR signal pathway genes to the different resistance levels of grapevine against Plasmopora viticola infection. Plant Physiol. Bioch. 107:56–66.
  • Maher, E.A., Bate, N.J., Ni, W., Elkind, Y., Dixon, R.A. and Lamb, C.J., 1994. Increased disease susceptibility of transgenic tobacco plants with suppressed levels of preformed phenylpropanoid products. Proc. Nat. Acad. Sci. USA. 91:7802–7806.
  • Mei, C., Qi, M., Sheng, G. and Yang, Y., 2006. Inducible overexpression of a rice allene oxide synthase gene increases the endogenous jasmonic acid level, PR gene expression, and host resistance to fungal infection. Mol. Plant–Microbe Interact. 19:1127–1137
  • Meng, X. and Tian, S., 2009. Effects of preharvest application of antagonistic yeast combined with chitosan on decay and quality of harvested table grape fruit. J. Sci. Food Agric. 89:1838–1842.
  • Meng, X.Z. and Zhang, S.Q., 2013. MAPK cascades in plant disease resistance signaling. Annu. Rev. Phytopathol. 51:245–266.
  • Nandeeshkumar, P., Sudisha, J., Ramachandra, K.K., Prakash, H.S., Niranjana, S.R. and Shekar, S.H., 2008. Chitosan induced resistance to downy mildew in sunflower caused by Plasmopara halstedii. Physiol. Mol. Plant P. 72:188–194.
  • Nürnberger, T. and Kufner, I., 2011. The role of the plant plasma membrane in microbial sensing and innate immunity. Plant Cell Monogr. 19:471–483.
  • Orlowska, E., Fiil, A., Kirk, H.G., Llorente, B. and Cvitanich, C., 2011. Differential gene induction in resistant and susceptible potato cultivars at early stages of infection by Phytophthora infestans. Plant Cell. Rep. 31:187–203.
  • Park, J.S., Kim, J.B., Hahn, B.S., Kim, K.H., Ha, S.H., Kim, J.B. and Kim, Y.H., 2004. EST analysis of genes involved in secondary metabolism in Camellia sinensis (tea), using suppression subtractive hybridization. Plant Sci. 166:953–961.
  • Pieterse, C.M.J., Leon–Reyes, A., Var der Ent, S. and Van Weers, S.C., 2009. Networking by small–molecule hormones in plant immunity. Nat. Chem. Biol. 5:308–316.
  • Qiu, W., Feechan, A. and Dry, I., 2015. Current understanding of grapevine defense mechanisms against the biotrophic fungus (Erysiphe necator), the causal agent of powdery mildew disease. Hort. Res. 2:15–20.
  • Rohde, A., Morreel, K. and Ralph, J., 2004. Molecular phenotyping of the Pal1 and Pal2 mutants of Arabidopsis thaliana reveals farreaching consequences on phenylpropanoid, amino acid and carbohydrate mechanisms. The Plant Cell.16:2749–2771.
  • Roje, S., 2006. S–adenosyl–L–methionine: beyond the universal methyl donor group. Phytochemistry 67:1686–1698.
  • Romanazzi, G., Mlikota Gabler, T. and Smilanick, J.L., 2006. Preharvest chitosan and postharvest UV irradiation treatments suppress gray mold of table grapes. Plant Dis. 90:445–450.
  • Romanazzi, G., Mlikota Gabler, F., Margosan, D.A., Mackey, B.E. and Smilanick, J.L., 2009. Effect of acid used to dissolve chitosan on its film forming properties and its ability to control postharvest gray mold of table grapes. Phytopathology 99:1028–1036.
  • Rosli, H.G., Zheng, Y., Pombo, M.A., Zhong, S., Bombarely, A., Fei, Z., Collmer, A. and Martin, G.B., 2013. Transcriptomics–based screen for genes induced by flagellin and repressed by pathogen effectors identifies a cell wall–associated kinase involved in plant immunity. Genome Biol. 14:R139.
  • Ross, A.F., 1961. Systemic acquired resistance induced by localized virus infections in plants. Virology 13:340–358.
  • Rossard, S., Luini, E., Perault, J.M., Bonmort, J. and Roblin, G., 2006. Early changes in membrane permeability, production of oxidative burst and modify cation of PAL activity induced by ergosterol in cotyledons of Mimosa pudica. J. Exp. Bot. 57:1245–1252.
  • Schmidt, K., Pflugmacher, M., Klages S., Maser, A., Mock, A. and Stahl, D.J., 2008. Accumulation of the hormone abscisic acid (ABA) at the infection site of the fungus Cercospora beticola supports the role of ABA as a repressor of plant defence in sugar beet. Mol. Plant Pathol. 9:661–673.
  • Segonzac, C. and Zipfel, C., 2011. Activation of plant pattern–recognition receptors by bacteria. Curr. Opin. Microbiol. 14:54–61
  • Sela–Buurlage, M.B., Ponstein, A.S., Bres–Vloemans, S.A., Melchers, L.S., van der Elzen, P.M.J. and Cornelissen, B.J.C., 1993. Only specific tobacco chitinases and β–1,3–glucanases exhibit antifungal activity. Plant Physiol. 101:857–863.
  • Shoresh, M., Harman, G.E. and Mastouri, F., 2010. Induced systemic resistance and plant responses to fungal biocontrol agents. Annu. Rev. Phytopathol. 48:21–43.
  • Thomma, B.P.H.J., Nürnberger, T. and Joosten, M., 2011. Of PAMPs and effectors: the blurred PTI–ETI dichotomy. Plant Cell 23:4–15.
  • Tornero, P., Conejero, V. and Vera, P., 1996. Primary structure and expression of pathogen–induced proteases (PR–P69) in tomato plants: similarity of functional domains to subtilisin–like endoproteases. Proc. Nat. Acad. Sci. USA. 93:6332–6337.
  • Vallad, G.E. and Goodman, R.M., 2004. Systemic acquired resistance and induced systemic resistance in conventional agriculture. Crop Sci. 44:1920–1934.
  • van der Hoorn, R.A.L. and Jones, J.D.G., 2004. The plant proteolytic machinery and its role in defence. Curr. Opin. Plant Biol. 7, 400–407.
  • van Loon, L.C., Bakker P.A. and Pieterse C.M., 1998. Systemic resistance induced by rhizosphere bacteria. Annu. Rev. Phytopathol. 36:453–483.
  • Vidhyasekaran, P., 2007. Fungal pathogenesis in plants and crops: molecular biology and host defense mechanisms. CRC Press/Taylor Francis Group, Boca Raton. p 510.
  • Vidhyasekaran, P., 2014. PAMP signals in plant innate immunity: signal perception and transduction. Springer, Dordrecht. p.442.
  • Vidhyasekaran, P., 2016. Switching on plant innate immunity signaling systems: bioenergiing and molecular manipulation of PAMP–PIMP–PRR signaling complex. ISBN: 978–3–319–26118–8 (e Book).
  • Walsh, P., Bursac, D., Law, Y.C., Cyr, D. and Lithgow, T., 2004. The Jprotein family: modulating protein assembly, disassembly and translocation. EMBO Reports 5:567–571.
  • Walters, D.R., 2009. Are plants in the field already induced? Implications for practical disease control. Crop Prot. 28:459–465.
  • Wang, C., Zien, C., Afitlhile, M., Welti, R., Hildebrand, D.F. and Wang, X., 2000. Involvement of phospholipase D in wound–induced accumulation of jasmonic acid in Arabidopsis. Plant Cell 12:2237–2246.
  • Wang, K., Liaoa, Y., Kanb, J., Hanb, L. and Zheng, Y., 2015. Response of direct or priming defense against Botrytis cinerea to methyl jasmonate treatment at different concentrations in grape berries. Int. J. Food Microbiol. 194:32–39.
  • Weng, K., Li, Z.Q., Liu, R.Q., Wang, L., Wang, Y.J. and Xu, Y., 2014. Transcriptome of Erysiphe necator infected Vitis pseudoreticulata leaves provides insight into grapevine resistance to powdery mildew. Hort. Res. 1:14049.
  • Xiang, T., Zong, N., Zou, Y., Wu, Y., Zhang, J., Xing, W., Li, Y., Tang, X., Zhu, L., Chai, J. and Zhou, J.M., 2008. Pseudomonas syringae effector AvrPto blocks innate immunity by targeting receptor kinases. Curr. Biol. 18:74–80.
  • Xu, Z.S., Xia, L.Q., Chen, M., Cheng, X.G., Zhang, R.Y., Li, L.C., Zhao, Y.X., Lu, Y., Ni, Z.Y., Liu, L., Qiu, Z.G. and Ma, Y.Z., 2007. Isolation and molecular characterization of the Triticum aestivum L. ethylene–responsive factor 1 (TaERF1) that increases multiple stress tolerance. Plant Mol. Biol. 65:719–732.
  • Yang, Y., J. Shah and D.F. Klessig, 1997. Signal perception and transduction in plant defense responses. In: Genes & Developmenment II: 1621–1639. Cold Spring Herbor Laboratory Press. ISSN: 0890–9369.
  • Yang, K.Y., Liu, Y.D. and Zhang, S.Q., 2001. Activation of a mitogen–activated protein kinase pathway is involved in disease resistance in tobacco. Proc. Natl. Acad. Sci. USA 98:741–746.
  • Zhang, L., Kars, I., Essenstam, B., Liebrand, T.W.H., Wagemakers, L., Elberse, J., Tagkalaki, P., Tjoitang, D., Ackerveken, G. and van Kan, J.A.L., 2014. Fungal endoploygalacturonases are recognized as microbe–associated molecular patterns by the Arabidopsis receptor–like protein Responsiveness to Botyrtys Polygalacturonases 1. Plant Physiol. 164:353–364
There are 85 citations in total.

Details

Primary Language Turkish
Journal Section Derlemeler
Authors

Gülhan Gülbasar Kandilli This is me

Gökhan Söylemezoğlu This is me

Arif Atak

Publication Date November 30, 2018
Submission Date July 26, 2017
Acceptance Date November 12, 2018
Published in Issue Year 2018 Volume: 47 Issue: 2

Cite

APA Gülbasar Kandilli, G., Söylemezoğlu, G., & Atak, A. (2018). Asmanın (Vitis spp.) Fungal Hastalıklarla Teşvik Edilen Savunma Mekanizması. Bahçe, 47(2), 45-55.
AMA Gülbasar Kandilli G, Söylemezoğlu G, Atak A. Asmanın (Vitis spp.) Fungal Hastalıklarla Teşvik Edilen Savunma Mekanizması. Bahçe. November 2018;47(2):45-55.
Chicago Gülbasar Kandilli, Gülhan, Gökhan Söylemezoğlu, and Arif Atak. “Asmanın (Vitis spp.) Fungal Hastalıklarla Teşvik Edilen Savunma Mekanizması”. Bahçe 47, no. 2 (November 2018): 45-55.
EndNote Gülbasar Kandilli G, Söylemezoğlu G, Atak A (November 1, 2018) Asmanın (Vitis spp.) Fungal Hastalıklarla Teşvik Edilen Savunma Mekanizması. Bahçe 47 2 45–55.
IEEE G. Gülbasar Kandilli, G. Söylemezoğlu, and A. Atak, “Asmanın (Vitis spp.) Fungal Hastalıklarla Teşvik Edilen Savunma Mekanizması”, Bahçe, vol. 47, no. 2, pp. 45–55, 2018.
ISNAD Gülbasar Kandilli, Gülhan et al. “Asmanın (Vitis spp.) Fungal Hastalıklarla Teşvik Edilen Savunma Mekanizması”. Bahçe 47/2 (November 2018), 45-55.
JAMA Gülbasar Kandilli G, Söylemezoğlu G, Atak A. Asmanın (Vitis spp.) Fungal Hastalıklarla Teşvik Edilen Savunma Mekanizması. Bahçe. 2018;47:45–55.
MLA Gülbasar Kandilli, Gülhan et al. “Asmanın (Vitis spp.) Fungal Hastalıklarla Teşvik Edilen Savunma Mekanizması”. Bahçe, vol. 47, no. 2, 2018, pp. 45-55.
Vancouver Gülbasar Kandilli G, Söylemezoğlu G, Atak A. Asmanın (Vitis spp.) Fungal Hastalıklarla Teşvik Edilen Savunma Mekanizması. Bahçe. 2018;47(2):45-5.

BAHÇE
bahcejournal@gmail.com
https://bahcejournal.org
Atatürk Bahçe Kültürleri Merkez Araştırma Enstitüsü, Yalova