Review
BibTex RIS Cite

The Use of CRISPR/CAS9 Technology in Vegetable Breeding

Year 2024, Volume: 53 Issue: Özel Sayı 1, 115 - 119, 16.07.2024
https://doi.org/10.53471/bahce.1481956

Abstract

Development of new varieties with high yield, quality, disease and pest resistance and tolerance to adverse environmental and soil conditions are among the major breeding objectives. In recent years, the development of improved varieties tolerant to biotic and abiotic stress factors that cause yield and quality loss is important for plant breeding. Classical breeding methods are widely used in the development of new varieties. However, since the process is long and labor intensive, current biotechnological methods are included in breeding programs to ensure that the breeding process is carried out faster and more effectively. Breeding studies accelerated with the introduction of new technologies in the field of molecular biology. In recent years, CRISPR/Cas9 next-generation genome editing technologies have been used to edit target genome regions to develop plants with desired traits. In this context, researches are carried out on various breeding objectives such as increasing resistance to diseases and pests, improving product quality, and developing plants tolerant to drought and salt stress. In the present study, the use of CRISPR/Cas9 technology for breeding purposes in some vegetable species was evaluated in the light of current research findings.

References

  • Tester, M., Langridge, P. 2010. Breeding technologies to increase crop production in a changing world. Science, 327:818-822.
  • Collard, B.C.Y., Mackill, D.J. 2008. Marker-assisted selection: an approach for precision plant breeding in the twenty-first century. Philosphical Transactions of the Royal Society B. 363:557-572.
  • Van der Oost, J., Jore, M.M., Westra, E.R., Lundgren, M., Brouns, S.J. 2009. CRISPR-based adaptive and heritable immunity in prokaryotes. Trends in Biochemical Sciences 34:401-407.
  • Ishino, Y., Shinagawa, H., Makino, K., Amemura, M., Nakatura, A. 1987. Nucleotide sequence of the iap gene, responsible for alkaline phosphatase isoenzyme conversion in Escherichia coli, and identification of the gene product. Journal of Bacteriology 169:5429-5433.
  • Jansen, R., Embden, J.D.V., Gaastra, W., Schouls, L.M. 2002. Identification of genes that are associated with DNA repeats in prokaryotes. Molecular Microbiology 43:1565-1575.
  • Ding, Y.D., Li, H., Chen, L.L., Xie, K.B. 2016. Recent advances in genome editing using CRISPR/ Cas9. Frontiers in Plant Science 7:703.
  • Jinek, M., Chylinski, K., Fonfara, I., Hauer, M., Doudna, J.A., Charpentier, E. 2012. A programmable dual RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 337:816-821.
  • Miao, J., Guo, D., Zhang, J., Huang, Q., Qin, G., Zhang, X., Wan, J., Gu, H., Qu, L.J. 2013. Targeted mutagenesis in rice using CRISPR-Cas system. Nature 23:1233-1236.
  • Jacobs, T.B., LaFayette, P.R., Schmitz, R.J., Parrott, W.A. 2015. Targeted genome modifications in soybean with CRISPR/Cas9. BMC Biotechnology 15:2-10.
  • Yang, H., Wu, J.J., Tang, T., Liu, K.D., Dai, C. 2017. CRISPR/Cas9-mediated genome editing efficiently creates specific mutations at multiple loci using one sgRNA in Brassica napus. Nature 7:1-13.
  • Sun, Y., Zhang, X., Wu, C., He, Y., Ma, Y., Hou, H., Xia, L. 2016. Engineering herbicide-resistant rice plants through CRISPR/Cas9-mediated homologous recombination of acetolactate synthase. Molecular Plant 9:628-631.
  • Zhou, J., Xin, X., He, Y. 2019. Multiplex QTL editing of grain-related genes improves yield in elite rice varieties. Plant Cell Reports 38:475-485.
  • Pyott, D.E., Sheehan, E., Molnar, A. 2016. Engineering of CRISPR/Cas9 mediated potyvirus resistance in transgene free Arabidopsis plants. Molecular Plant Pathology 178:1276-1288.
  • Shi, J., Gao, H., Wang, H., Lafitte, H.R., Archibald, R.L., Yang, M., Habben, J.E. 2017. Argos 8 variants generated by CRISPR Cas9 improve maize grain yield under field drought stress conditions. Plant Biotechnology Journal 15:207-216.
  • Xu, Z.S., Yang, Q.Q., Feng, K., Xiong, A.S. 2019. Changing carrot color: insertions in DcMYB7 alter the regulation of anthocyanin biosynthesis and modification. Plant Physiology 18:195-207.
  • Ren, C., Liu, X., Zhang, Z., Wang, Y., Duan, W., Li, S., Liang, Z. 2016. CRISPR/Cas9-mediated efficient targeted mutagenesis in Chardonnay (Vitis vinifera L.). Scientific Reports 6:1-9.
  • Sun, Y., Jiao, G., Liu, Z., Zhang, X., Li, J., Guo, X., Xia, L. 2017. Generation of high-amylose rice through CRISPR/Cas9 mediated targeted mutagenesis of starch branching enzymes. Frontiers in Plant Science 8:298.
  • Dong, O.X., Yu, S., Jain, R., Zhang, N., Duong, P.Q., Butler, C., Ronald, P.C. 2020. Marker-free carotenoid-enriched rice generated through targeted gene insertion using CRISPR-Cas9. Nature Communications 11:1-10.
  • Brooks, C., Nekrasov, V., Lippman, Z.B., Van Eck, J. 2014. Efficient gene editing in tomato in the first generation using the clustered regularly interspaced short palindromic repeats/CRISPR-associated system. Plant Physiology 166:1292-1297.
  • Deng, L., Wang, H., Sun, C., Li, Q., Jiang, H., Du, M., Li, C.B., Li, C. 2018. Efficient generation of pink-fruited tomatoes using CRISPR/Cas9 system. Journal of Genetics and Genomics 45:51-54.
  • Paula de Toledo Thomazella, D., Brail, Q., Dahlbeck, D., Staskawicz, B. 2016. CRISPR-Cas9 mediated mutagenesis of a DMR6 ortholog in tomato confers broad-spectrum disease resistance Proceedings of the National Academy of Sciences 118(27):e2026152118.
  • Nekrasov, V., Wang, C., Win, J., Lanz, C., Weigel, D., Kamoun, S. 2017. Rapid generation of a transgene-free powdery mildew resistant tomato by genome deletion. Scientific Reports 7:1-6.
  • Prihatna, C., Barbetti, M.J., Barker, S.J. 2018. A Novel Tomato Fusarium Wilt Tolerance Gene. Frontiers in Microbiology 9:1226.
  • Zhang, S., Wang, L., Zhao, R., Yu, W., Li, R., Li, Y., Sheng, J., Shen, L. 2018. Knockout of SlMAPK3 reduced disease resistance to Botrytis cinerea in tomato plants. Journal of Agricultural and Food Chemistry 34:8949-8956.
  • Chandrasekaran, J., Brumin, M., Wolf, D., Leibman, D., Klap, C., Pearlsman, M., Sherman, A., Arazi, T., Gal-On., A. 2016. A. Development of broad virus resistance in non-transgenic cucumber using CRISPR/Cas9 technology. Molecular Plant Pathology 17:1140-1153.
  • Wang, L., Chen, L., Li, R., Zhao, R., Yang, M., Sheng, J., Shen, L. 2017. Reduced drought tolerance by CRISPR/Cas9-mediated SlMAPK3 mutagenesis in tomato plants. Journal of Agricultural and Food Chemistry 65:8674-8682.
  • Tran, M.T., Doan, D.T.H., Kim, J., Song, Y.J., Sung, Y.W., Das, S., Kim, E.J., Son, G.H., Kim, S.H., Van Vu, T., Kim, J.Y. 2020. CRISPR/Cas9-based precise excision of SlHyPRP1 domain(s) to obtain salt stress-tolerant tomato. Frontiers in Plant Science 999:10-11.
  • Yang, T., Ali, M., Lin, L., Li, P., He, H., Zhu, Q., Sun, C., Wu, N., Zhang, X., Huang, T., Li, C-B., Li, C., Deng, L. 2023. Recoloring tomato fruit by CRISPR/Cas9-mediated multiplex gene editing. Horticulture Research 10:1-6.
  • Sun, B., Jiang, M., Zheng, H., Jian, Y., Huang, W.L., Yuan, Q., Zheng, A.H., Chen, Q., Zhang, Y.T., Lin, Y.X. 2020. Color-related chlorophyll and carotenoid concentrations of Chinese kale can be altered through CRISPR/Cas9 targeted editing of the carotenoid isomerase gene BoaCRTISO. Horticulture Research 7:161.
  • Nakayasu, M., Akiyama, R., Lee, H.J., Osakabe, K., Osakabe, Y., Watanabe, B., Sugimoto, Y., Umemoto, N., Saito, K., Muranaka, T. 2018. Generation of α-solanine-free hairy roots of potato by CRISPR/Cas9 mediated genome editing of the St16DOX gene. Plant Physiology and Biochemistry 131:70-77.
  • Ito, Y., Nishizawa-Yokoi, A., Endo, M., Mikami, M., Toki, S. 2015. CRISPR/Cas9-mediated mutagenesis of the RIN locus that regulates tomato fruit ripening. Biochemical and Biophysical Research Communications 467:76-82.
  • Shan, Q., Wang, Y., Li, J., Zhang, Y., Chen, K., Liang, Z., Zhang, K., Liu, J., Xi, J.J., Qiu, J.L. 2013. Targeted genome modification of crop plants using a CRISPR-Cas system. Nature Biotechnology 31:686-688.
  • Chilcoat, D., Liu, Z.B., Sander, J. 2017. Use of CRISPR/Cas9 for crop improvement in maize and soybean. progress in molecular biology and translational science. Progress in Molecular Biology and Translational Science 149:27-46.
  • Karkute, S.G., Singh, A.K., Gupta, O.P., Singh, P.M., Singh, B. 2017. CRISPR/Cas9 mediated genome engineering for improvement of horticultural crops. Frontiers in Plant Science 8:1635.

CRISPR/Cas9 Teknolojisinin Sebze Islahında Kullanımı

Year 2024, Volume: 53 Issue: Özel Sayı 1, 115 - 119, 16.07.2024
https://doi.org/10.53471/bahce.1481956

Abstract

Bitkilerde verim, kalite, hastalık ve zararlılara dayanıklılık, olumsuz çevre ve toprak koşullarına tolerant yeni çeşitlerin geliştirilmesi öncelikli ıslah hedefleri arasındadır. Özellikle son yıllarda verim ve kalite kaybına neden olan biyotik ve abiyotik stres faktörlerine karşı adaptasyon yeteneği yüksek çeşitlerin geliştirilmesi bitki ıslahı açısından önem taşımaktadır. Yeni çeşitlerin geliştirilmesinde klasik ıslah yöntemleri yaygın olarak kullanılmaktadır. Ancak, sürecin uzun olması ve yoğun iş gücü gerektirmesi nedeniyle güncel teknolojik yöntemler ıslah programlarına dahil edilerek ıslah sürecinin daha hızlı ve etkin olarak yürütülmesi sağlanmaktadır. Moleküler biyoloji alanında yeni nesil teknolojilerin kullanılmaya başlanmasıyla birlikte ıslah çalışmaları hız kazanmıştır. Son yıllarda CRISPR/Cas9 yeni nesil genom düzenleme uygulamaları ile genomda hedef bölgeler düzenlenerek bitkilere ıslah amacına yönelik özellikler kazandırılmaktadır. Bu kapsamda hastalık ve zararlılara karşı direncin artırılması, ürün kalitesinin iyileştirilmesi, kuraklık ve tuz stresine karşı tolerant bitkilerin geliştirilmesi başta olmak üzere çeşitli konularda araştırmalar yürütülmektedir. Sunulan çalışmada, CRISPR/Cas9 teknolojisinin bazı sebze türlerinin ıslahında kullanımı güncel araştırma bulguları ışığında değerlendirilmiştir.

References

  • Tester, M., Langridge, P. 2010. Breeding technologies to increase crop production in a changing world. Science, 327:818-822.
  • Collard, B.C.Y., Mackill, D.J. 2008. Marker-assisted selection: an approach for precision plant breeding in the twenty-first century. Philosphical Transactions of the Royal Society B. 363:557-572.
  • Van der Oost, J., Jore, M.M., Westra, E.R., Lundgren, M., Brouns, S.J. 2009. CRISPR-based adaptive and heritable immunity in prokaryotes. Trends in Biochemical Sciences 34:401-407.
  • Ishino, Y., Shinagawa, H., Makino, K., Amemura, M., Nakatura, A. 1987. Nucleotide sequence of the iap gene, responsible for alkaline phosphatase isoenzyme conversion in Escherichia coli, and identification of the gene product. Journal of Bacteriology 169:5429-5433.
  • Jansen, R., Embden, J.D.V., Gaastra, W., Schouls, L.M. 2002. Identification of genes that are associated with DNA repeats in prokaryotes. Molecular Microbiology 43:1565-1575.
  • Ding, Y.D., Li, H., Chen, L.L., Xie, K.B. 2016. Recent advances in genome editing using CRISPR/ Cas9. Frontiers in Plant Science 7:703.
  • Jinek, M., Chylinski, K., Fonfara, I., Hauer, M., Doudna, J.A., Charpentier, E. 2012. A programmable dual RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 337:816-821.
  • Miao, J., Guo, D., Zhang, J., Huang, Q., Qin, G., Zhang, X., Wan, J., Gu, H., Qu, L.J. 2013. Targeted mutagenesis in rice using CRISPR-Cas system. Nature 23:1233-1236.
  • Jacobs, T.B., LaFayette, P.R., Schmitz, R.J., Parrott, W.A. 2015. Targeted genome modifications in soybean with CRISPR/Cas9. BMC Biotechnology 15:2-10.
  • Yang, H., Wu, J.J., Tang, T., Liu, K.D., Dai, C. 2017. CRISPR/Cas9-mediated genome editing efficiently creates specific mutations at multiple loci using one sgRNA in Brassica napus. Nature 7:1-13.
  • Sun, Y., Zhang, X., Wu, C., He, Y., Ma, Y., Hou, H., Xia, L. 2016. Engineering herbicide-resistant rice plants through CRISPR/Cas9-mediated homologous recombination of acetolactate synthase. Molecular Plant 9:628-631.
  • Zhou, J., Xin, X., He, Y. 2019. Multiplex QTL editing of grain-related genes improves yield in elite rice varieties. Plant Cell Reports 38:475-485.
  • Pyott, D.E., Sheehan, E., Molnar, A. 2016. Engineering of CRISPR/Cas9 mediated potyvirus resistance in transgene free Arabidopsis plants. Molecular Plant Pathology 178:1276-1288.
  • Shi, J., Gao, H., Wang, H., Lafitte, H.R., Archibald, R.L., Yang, M., Habben, J.E. 2017. Argos 8 variants generated by CRISPR Cas9 improve maize grain yield under field drought stress conditions. Plant Biotechnology Journal 15:207-216.
  • Xu, Z.S., Yang, Q.Q., Feng, K., Xiong, A.S. 2019. Changing carrot color: insertions in DcMYB7 alter the regulation of anthocyanin biosynthesis and modification. Plant Physiology 18:195-207.
  • Ren, C., Liu, X., Zhang, Z., Wang, Y., Duan, W., Li, S., Liang, Z. 2016. CRISPR/Cas9-mediated efficient targeted mutagenesis in Chardonnay (Vitis vinifera L.). Scientific Reports 6:1-9.
  • Sun, Y., Jiao, G., Liu, Z., Zhang, X., Li, J., Guo, X., Xia, L. 2017. Generation of high-amylose rice through CRISPR/Cas9 mediated targeted mutagenesis of starch branching enzymes. Frontiers in Plant Science 8:298.
  • Dong, O.X., Yu, S., Jain, R., Zhang, N., Duong, P.Q., Butler, C., Ronald, P.C. 2020. Marker-free carotenoid-enriched rice generated through targeted gene insertion using CRISPR-Cas9. Nature Communications 11:1-10.
  • Brooks, C., Nekrasov, V., Lippman, Z.B., Van Eck, J. 2014. Efficient gene editing in tomato in the first generation using the clustered regularly interspaced short palindromic repeats/CRISPR-associated system. Plant Physiology 166:1292-1297.
  • Deng, L., Wang, H., Sun, C., Li, Q., Jiang, H., Du, M., Li, C.B., Li, C. 2018. Efficient generation of pink-fruited tomatoes using CRISPR/Cas9 system. Journal of Genetics and Genomics 45:51-54.
  • Paula de Toledo Thomazella, D., Brail, Q., Dahlbeck, D., Staskawicz, B. 2016. CRISPR-Cas9 mediated mutagenesis of a DMR6 ortholog in tomato confers broad-spectrum disease resistance Proceedings of the National Academy of Sciences 118(27):e2026152118.
  • Nekrasov, V., Wang, C., Win, J., Lanz, C., Weigel, D., Kamoun, S. 2017. Rapid generation of a transgene-free powdery mildew resistant tomato by genome deletion. Scientific Reports 7:1-6.
  • Prihatna, C., Barbetti, M.J., Barker, S.J. 2018. A Novel Tomato Fusarium Wilt Tolerance Gene. Frontiers in Microbiology 9:1226.
  • Zhang, S., Wang, L., Zhao, R., Yu, W., Li, R., Li, Y., Sheng, J., Shen, L. 2018. Knockout of SlMAPK3 reduced disease resistance to Botrytis cinerea in tomato plants. Journal of Agricultural and Food Chemistry 34:8949-8956.
  • Chandrasekaran, J., Brumin, M., Wolf, D., Leibman, D., Klap, C., Pearlsman, M., Sherman, A., Arazi, T., Gal-On., A. 2016. A. Development of broad virus resistance in non-transgenic cucumber using CRISPR/Cas9 technology. Molecular Plant Pathology 17:1140-1153.
  • Wang, L., Chen, L., Li, R., Zhao, R., Yang, M., Sheng, J., Shen, L. 2017. Reduced drought tolerance by CRISPR/Cas9-mediated SlMAPK3 mutagenesis in tomato plants. Journal of Agricultural and Food Chemistry 65:8674-8682.
  • Tran, M.T., Doan, D.T.H., Kim, J., Song, Y.J., Sung, Y.W., Das, S., Kim, E.J., Son, G.H., Kim, S.H., Van Vu, T., Kim, J.Y. 2020. CRISPR/Cas9-based precise excision of SlHyPRP1 domain(s) to obtain salt stress-tolerant tomato. Frontiers in Plant Science 999:10-11.
  • Yang, T., Ali, M., Lin, L., Li, P., He, H., Zhu, Q., Sun, C., Wu, N., Zhang, X., Huang, T., Li, C-B., Li, C., Deng, L. 2023. Recoloring tomato fruit by CRISPR/Cas9-mediated multiplex gene editing. Horticulture Research 10:1-6.
  • Sun, B., Jiang, M., Zheng, H., Jian, Y., Huang, W.L., Yuan, Q., Zheng, A.H., Chen, Q., Zhang, Y.T., Lin, Y.X. 2020. Color-related chlorophyll and carotenoid concentrations of Chinese kale can be altered through CRISPR/Cas9 targeted editing of the carotenoid isomerase gene BoaCRTISO. Horticulture Research 7:161.
  • Nakayasu, M., Akiyama, R., Lee, H.J., Osakabe, K., Osakabe, Y., Watanabe, B., Sugimoto, Y., Umemoto, N., Saito, K., Muranaka, T. 2018. Generation of α-solanine-free hairy roots of potato by CRISPR/Cas9 mediated genome editing of the St16DOX gene. Plant Physiology and Biochemistry 131:70-77.
  • Ito, Y., Nishizawa-Yokoi, A., Endo, M., Mikami, M., Toki, S. 2015. CRISPR/Cas9-mediated mutagenesis of the RIN locus that regulates tomato fruit ripening. Biochemical and Biophysical Research Communications 467:76-82.
  • Shan, Q., Wang, Y., Li, J., Zhang, Y., Chen, K., Liang, Z., Zhang, K., Liu, J., Xi, J.J., Qiu, J.L. 2013. Targeted genome modification of crop plants using a CRISPR-Cas system. Nature Biotechnology 31:686-688.
  • Chilcoat, D., Liu, Z.B., Sander, J. 2017. Use of CRISPR/Cas9 for crop improvement in maize and soybean. progress in molecular biology and translational science. Progress in Molecular Biology and Translational Science 149:27-46.
  • Karkute, S.G., Singh, A.K., Gupta, O.P., Singh, P.M., Singh, B. 2017. CRISPR/Cas9 mediated genome engineering for improvement of horticultural crops. Frontiers in Plant Science 8:1635.
There are 34 citations in total.

Details

Primary Language Turkish
Subjects Horticultural Production (Other)
Journal Section Derlemeler
Authors

Şeyma Sütçü 0000-0002-0205-6062

Gölge Sarıkamış 0000-0003-0645-9464

Publication Date July 16, 2024
Submission Date August 16, 2023
Acceptance Date August 30, 2023
Published in Issue Year 2024 Volume: 53 Issue: Özel Sayı 1

Cite

APA Sütçü, Ş., & Sarıkamış, G. (2024). CRISPR/Cas9 Teknolojisinin Sebze Islahında Kullanımı. Bahçe, 53(Özel Sayı 1), 115-119. https://doi.org/10.53471/bahce.1481956
AMA Sütçü Ş, Sarıkamış G. CRISPR/Cas9 Teknolojisinin Sebze Islahında Kullanımı. Bahçe. July 2024;53(Özel Sayı 1):115-119. doi:10.53471/bahce.1481956
Chicago Sütçü, Şeyma, and Gölge Sarıkamış. “CRISPR/Cas9 Teknolojisinin Sebze Islahında Kullanımı”. Bahçe 53, no. Özel Sayı 1 (July 2024): 115-19. https://doi.org/10.53471/bahce.1481956.
EndNote Sütçü Ş, Sarıkamış G (July 1, 2024) CRISPR/Cas9 Teknolojisinin Sebze Islahında Kullanımı. Bahçe 53 Özel Sayı 1 115–119.
IEEE Ş. Sütçü and G. Sarıkamış, “CRISPR/Cas9 Teknolojisinin Sebze Islahında Kullanımı”, Bahçe, vol. 53, no. Özel Sayı 1, pp. 115–119, 2024, doi: 10.53471/bahce.1481956.
ISNAD Sütçü, Şeyma - Sarıkamış, Gölge. “CRISPR/Cas9 Teknolojisinin Sebze Islahında Kullanımı”. Bahçe 53/Özel Sayı 1 (July 2024), 115-119. https://doi.org/10.53471/bahce.1481956.
JAMA Sütçü Ş, Sarıkamış G. CRISPR/Cas9 Teknolojisinin Sebze Islahında Kullanımı. Bahçe. 2024;53:115–119.
MLA Sütçü, Şeyma and Gölge Sarıkamış. “CRISPR/Cas9 Teknolojisinin Sebze Islahında Kullanımı”. Bahçe, vol. 53, no. Özel Sayı 1, 2024, pp. 115-9, doi:10.53471/bahce.1481956.
Vancouver Sütçü Ş, Sarıkamış G. CRISPR/Cas9 Teknolojisinin Sebze Islahında Kullanımı. Bahçe. 2024;53(Özel Sayı 1):115-9.

BAHÇE
bahcejournal@gmail.com
https://bahcejournal.org
Atatürk Bahçe Kültürleri Merkez Araştırma Enstitüsü, Yalova