Asma Islahında Son Gelişmeler ve Güncel Metotlar
Year 2024,
Volume: 53 Issue: 2, 127 - 135, 26.11.2024
Şeyma Bozkuş
,
Mücahid Bozkuş
Abstract
Asma (Vitis vinifera subsp. vinifera), dünya genelinde en yaygın ve ekonomik olarak yetiştiriciliği yapılan çok yıllık meyve türlerinden biridir. Asma ürünlerinin insan sağlığı üzerindeki olumlu etkilerinin bilinmesiyle, dünyadaki bağ alanlarında istikrarlı bir artış görülmüştür. Değişen çevresel koşullar ve pazar talepleri doğrultusunda yıllar içinde değişen bağcılık sektöründe yeni çeşitlerin geliştirilmesiyle üzümün pazardaki sürdürülebilirliği sağlanmıştır. Bu bağlamda, biyoteknoloji ve genetik mühendisliği alanındaki gelişmeler üzüm verimliliğini ve kalitesini arttırmada etkili bir araç olarak ortaya çıkmıştır. Genetik biliminin sağlamış olduğu metotları klasik asma ıslahı sürecine dâhil etmek, meyve kalitesinin arttırılması, biyotik ve abiyotik stres şartlarına karşı dayanıklı asma türlerinin daha hızlı geliştirilmesine olanak sağlamaktadır. Bu derlemenin amacı, asma ıslahında geçmişten günümüze kadar olan süreçler ve kullanılan önemli metotlar ile ilgili bir perspektif sunmak ve yeni teknolojilerin asma genetiğinin iyileştirilmesi potansiyeli hakkında bilgi vermektir.
References
- Faostat, 2021. Food And Agrıculture Organızatıon Of Unıted Natıons. Available: https://www.fao.org/faostat/en/#data/QCL.
- Bozkus, S. 2021. Exploring Quantitative Trait Loci Mapping for Bud Fruitfulness and Bud Break Traits in Grapevine F2 Population. Amerika Birleşik Devletleri: PROQUEST.COM.
- Atak, A., 2022. New Perspectives in Grapevine (Vitis spp.) Breeding. Case Studies of Breeding Strategies in Major Plant Species. içinde intechopen. doi:10.5772/intechopen.
- Reisch, B. I., Owens, C. L., & Cousins, P. S., 2012. Grape. M. L. Badenes, & D. H. Byrne (Dü) içinde, Fruit Breeding, New York, Amerika Birleşik Devletleri: Springer. pp: 225-262. doi:https://doi.org/10.1007/978-1-4419-0763-9_7
- Tantasawat, P., Poolsawat, O., Chaowiset, W., 2010. Grapevıne Breedıng And Genetıcs. The Role of Food, Agrıculture, Forestry and Fısherıes in Human Nutrıtıon.
- Atak, A., Şen, A. 2021. A grape breeding programme using differentVitisspecies. Plant Breeding, 140(6): 1136 - 1149.
- Semerci, A., Kızıltuğ, T., Çelik, A. D., Kiracı, M. A., 2015. Türkiye Bağcılığının Genel Durumu. Mustafa Kemal Üniversitesi Ziraat Fakültesi Dergisi: 42-51.
Zhang, X.-m., Wu, Y.-f., Li, Z., Song, C.-b., Wang, X.-p., 2021. Advancements in plant regeneration and genetic transformation of. Journal of Integrative Agriculture, 20(6):1407–1434.
- De Lorenzis, G., 2024. From ancient to modern grapevine cultivars: a lesson from cultivars that made the history of viticulture., Acta Hortic,1385: 47-58. doi: 10.17660/ActaHortic.2024.1385.7
- Campbell, C., 2006. The Botanist and the Vintner:How Wine Was Saved for the World. Algonquin Books.
- Eibach, R., Töpfer, R., 2015. Traditional grapevine breeding techniques. Grapevine Breeding Programs for the Wine Industry Woodhead Publishing Series in Food Science, Technology and Nutrition. pp: 3-22. doi:https://doi.org/10.1016/B978-1-78242-075-0.00001-6
- Kambiranda, D., Obuya, J., Snowden, J. 2020. Grapevine Improvement through Biotechnology. IntechOpen. doi:10.5772/intechopen.91851
- Atak, A., 2024. Table grape breeding programs and new cultivars. Acta Hortic, 1385, 9-18
doi: 10.17660/ActaHortic.2024.1385.2
- Atak, Arif., 2024. "Climate change and adaptive strategies on viticulture (Vitis spp.)" Open Agriculture:9(1): 20220258. https://doi.org/10.1515/opag-2022-0258
- Toepfer, R., Hausmann, L., Harst, M., Maul, E., Zyprian, E., Eibach, R. 2011. New Horizons for Grapevine Breeding. Fruit, vegetable and cereal science and biotechnology. pp: 79-100.
- Atak, A., Ergönül, O., Dilli, Y., Kesgin, M. and Altındişli, A. (2023). Grapevine breeding studies in Turkey. Acta Hortic. 1370, 145-152. Doi: 10.17660/ActaHortic.2023.1370.18
- Reynolds, A. G., Reisch, B. I. 2015. Grapevine breeding in the Eastern United States. In Grapevine breeding programs for the wine industry. Woodhead Publishing. pp:3-22
- Bozkurt, A., Yağcı, A. 2022. A General Overview Of Grape Breedıng In Consıderatıon Of Lıterature From Past To Present. Chapters on Viticulture İksad Press pp: 3-24.
- Ruehl, E., Schmid, J., Eibach, R., Töpfer, R. 2015. Grapevine breeding programmes in Germany. In Grapevine breeding programs for the wine industry. Woodhead Publishing. pp:77-101.
- Manty, F., 2005. Hintergründe zur Entstehung der Bezeichnungen der Unterlagenselektionen von Sigmund Teleki und Franz Kober. Dtsch Weinbau Jahrb. pp:159-164.
- Bavaresco, L., Gardiman, M., Brancadoro, L., Espen, L., Failla, O., Scienza, A., & Testolin, R. ,2015. Grapevine breeding programs in Italy. In Grapevine breeding programs for the wine industry. Woodhead Publishing. pp: 135-157
- Ibáñez, J., Carreño, J., Yuste, J., & Martínez-Zapater, J. M., 2015. Grapevine breeding and clonal selection programmes in Spain. Grapevine breeding programs for the wine industry, Woodhead Publishing. pp: 183-209.
- Di Gaspero, G., Foria, S., 2015. Molecular grapevine breeding. Grapevine Breeding Programs for the Wine Industry, Woodhead Publishing. pp: 23-37
- Hyma, K. E., Barba, P., Wang, M., Londo, J. P., Acharya, C. B., Mitchell, S. E., . . . Reisch, B. , 2015. Heterozygous Mapping Strategy (HetMappS) for High Resolution Genotyping-By-Sequencing Markers: A Case Study in Grapevine. PloS One, 10:8, e0134880 doi:https://doi.org/10.1371/journal.pone.0134880
- İşçi, B. 2008. Asmada Qtl (Kantitatif Karakter Lokus) Analizi. Anadolu Ege Tarımsal Araştırma Enstitüsü Dergisi, 8:2:11-37.
- Şahin, Ö., & Kavuncu, O., 2019. QTL Analysis Methods. Kastamonu University Journal of Engineering and Sciences, 5:1:51-57
- Collard, B. C., Jahufer, M. Z., Brouwer, J. B., & Pang, E. C., 2005. An introduction to markers, quantitative trait loci (QTL) mapping and marker-assisted selection for crop improvement:the basic concepts. Euphytica, 142: 169-196
- Fanizza, G., Lamaj, F., Costantini, L., Chaabane, R., Grando, M. S., 2005. QTL analysis for fruit yield components in table grapes (Vitis vinifera). Theoretical and Applied Genetics, (111).
- Grzeskowiak, L., Costantini, L., Lorenzi, S., Grando, M. S., 2013. Candidate loci for phenology and fruitfulness contributing to the phenotypic variability observed in grapevine. Theoretical and Applied Genetics, 126, pp: 2763-2776
- Butiuc-Keul, A., Coste, A., 2023. Biotechnologies and Strategies for Grapevine Improvement. Horticulturae, 9:1. doi:https://doi.org/10.3390/horticulturae9010062
- Yang, S., Fresnedo-Ramírez, J., Sun, Q., Manns, D. C., Sacks, G. L., Mansfield, A. K., . . . Fennell, A. Y. 2016. Next generation mapping of enological traits in an F2 interspecific grapevine hybrid family. PLOS ONE. doi:https://doi.org/10.1371/journal.pone.0149560
- Bhat, J. A., Ali, S., Salgotra, R. K., Mir, Z., Dutta, S., Jadon, V., . . . Prabhu, K., 2016. Genomic Selection in the Era of Next Generation Sequencing for Complex Traits in Plant Breeding. Frontiers in Genetics, 7:221. doi:doi: 10.3389/fgene.2016.00221J.
- Gizachew, H. G., 2023. Genomic Selection: A Faster Strategy for Plant Breeding. IntechOpen. doi: 10.5772/intechopen.105398
- Meuwissen, T. H., Hayes, B. J., & Goddard, M. E., 2001. Prediction of total genetic value using genome-wide dense marker maps. Genetics, 157:4:1819–1829. doi:https://doi.org/10.1093/genetics/157.4.1819
- Poland, J., Endelman, J. B., Dawson, J. C., Rutkoski, J., Wu, S., Manes, Y., . . . Jannink, J.-L., 2012. Genomic Selection in Wheat Breeding using Genotyping-by-Sequencing. Plant Genome, 5:103-113. doi:10.3835/plantgenome2012.06.0006
- Campos, G., Chialva, C., Miras, S., & Lijavetzky, D., 2021. New Technologies and Strategies for Grapevine Breeding Through Genetic Transformation. Frontiers, Volume 12. doi:https://doi.org/10.3389/fpls.2021.767522
- Bouque, A., Torregrosa, L., Iocco, P., & Thomas, M. R., 2006. Grapevine (Vitis vinifera L.). K. Wang içinde, Agrobacterium Protocols Volume 2.Methods in Molecular Biology Humana Press, 344: 273–285. doi:10.1385/1-59745-131-2:273
- Capriotti, L., Baraldi, E., Mezzetti, B., Limera, C., & Sabbadini, S., 2020. Biotechnological Approaches: Gene Overexpression, Gene Silencing, and Genome Editing to Control Fungal and Oomycete Diseases in Grapevine. International Journal of Molecular Sciences,, 21:16:5071.
- Vıdal, J., Gomez, C., Cutanda, M., Shrestha, B., Bouquet, A., Thomas, M., & Torregrosa, L., 2010. Use of gene transfer technology for functional studies in grapevine. Australian Journal of Grape and Wine Research, 16:138-151.
- Dalla Costa, L., Malnoy, M., Lecourieux, D., Deluc, L., Ouaked-Lecourieux, F., Thomas, M., & Torregrosa, L. J.-M., 2019. The state-of-the-art of grapevine biotechnology and new breeding technologies (NBTS). OENO One, 53:2:189-212.
- Doyle, C., Higginbottom, K., Swif, T. A., Winfield, M., Bellas, C., Benito-Alifonso, D., . . . Whitney, H. M., 2019. A simple method for spray-on gene editing in planta. bioRxiv. doi: https://doi.org/10.1101/805036
- Malnoy, M., Viola, R., Jung, M.-H., Koo, O.-J., Kim, S., Kim, J.-S., . . . Kanchiswamy, C. N., 2016. DNA-free genetically edited grapevine and apple protoplast using CRISPR/Cas9 ribonucleoproteins. Frontiers in plant science, 7. doi:https://doi.org/10.3389/fpls.2016.01904
- Ren, F., Ren, C., Zhang, Z., Duan, W., Lecourieux, D., Li, S., Liang, Z., 2019. Efficiency optimization of CRISPR/Cas9-mediated targeted mutagenesis in grape. Frontiers in plant science, 1:10:612.
- Ren, C., Liu, X., Zhang, Z., Wang, Y., Duan, W., Li, S., Liang, Z., 2016. CRISPR/Cas9-mediated efficient targeted mutagenesis in Chardonnay (Vitis vinifera L.). Scientific reports, 6:1.
- Wang, X., Tu, M., Wang, D., Liu, J., Li, Y., Li, Z., . . . Wang, X., 2018. CRISPR/Cas9‐mediated efficient targeted mutagenesis in grape in the first generation. Plant biotechnology journal,, 16:4.
- Li, M.-Y., Jiao, Y.-T., Wang, Y.-T., Zhang, N., Wang, B.-B., Liu, R.-Q., . . . Liu, G.-T., 2020. CRISPR/Cas9-mediated VvPR4b editing decreases downy mildew resistance in grapevine (Vitis vinifera L.). Horticulture research, 7. doi:https://doi.org/10.1038/s41438-020-00371-4
- Nakajima, I., Ban, Y., Azuma, A., Onoue, N., Moriguchi, T., Yamamoto, T., . . . Endo, M., 2017. CRISPR/Cas9-mediated targeted mutagenesis in grape. PLoS One,. doi:https://doi.org/10.1371/journal.pone.0177966
Latest Developments and Current Methods in Grapevine Breeding
Year 2024,
Volume: 53 Issue: 2, 127 - 135, 26.11.2024
Şeyma Bozkuş
,
Mücahid Bozkuş
Abstract
Grapevine (Vitis vinifera subsp. vinifera) is one of the most widespread and economically cultivated perennial fruit crops in the world. The knowledge of the beneficial effects of grapevine products on human health has led to a steady increase in vineyards around the world. In response to changing environmental conditions and market demands, the sustainability of grapes in the marketplace has been ensured by developing new varieties in the evolving viticulture sector over the years. In this context, developments in biotechnology and genetic engineering have emerged as effective tools to enhance grape productivity and quality. Integrating the methods provided by genetic science into the traditional grapevine breeding process allows for the improvement of fruit quality and the faster development of grapevine varieties resistant to abiotic and biotic stress conditions. The aim of this review is to provide a perspective on the processes and important methods used in grapevine breeding from the past to the present and to identify the potential of new technologies to improve grape genetics.
References
- Faostat, 2021. Food And Agrıculture Organızatıon Of Unıted Natıons. Available: https://www.fao.org/faostat/en/#data/QCL.
- Bozkus, S. 2021. Exploring Quantitative Trait Loci Mapping for Bud Fruitfulness and Bud Break Traits in Grapevine F2 Population. Amerika Birleşik Devletleri: PROQUEST.COM.
- Atak, A., 2022. New Perspectives in Grapevine (Vitis spp.) Breeding. Case Studies of Breeding Strategies in Major Plant Species. içinde intechopen. doi:10.5772/intechopen.
- Reisch, B. I., Owens, C. L., & Cousins, P. S., 2012. Grape. M. L. Badenes, & D. H. Byrne (Dü) içinde, Fruit Breeding, New York, Amerika Birleşik Devletleri: Springer. pp: 225-262. doi:https://doi.org/10.1007/978-1-4419-0763-9_7
- Tantasawat, P., Poolsawat, O., Chaowiset, W., 2010. Grapevıne Breedıng And Genetıcs. The Role of Food, Agrıculture, Forestry and Fısherıes in Human Nutrıtıon.
- Atak, A., Şen, A. 2021. A grape breeding programme using differentVitisspecies. Plant Breeding, 140(6): 1136 - 1149.
- Semerci, A., Kızıltuğ, T., Çelik, A. D., Kiracı, M. A., 2015. Türkiye Bağcılığının Genel Durumu. Mustafa Kemal Üniversitesi Ziraat Fakültesi Dergisi: 42-51.
Zhang, X.-m., Wu, Y.-f., Li, Z., Song, C.-b., Wang, X.-p., 2021. Advancements in plant regeneration and genetic transformation of. Journal of Integrative Agriculture, 20(6):1407–1434.
- De Lorenzis, G., 2024. From ancient to modern grapevine cultivars: a lesson from cultivars that made the history of viticulture., Acta Hortic,1385: 47-58. doi: 10.17660/ActaHortic.2024.1385.7
- Campbell, C., 2006. The Botanist and the Vintner:How Wine Was Saved for the World. Algonquin Books.
- Eibach, R., Töpfer, R., 2015. Traditional grapevine breeding techniques. Grapevine Breeding Programs for the Wine Industry Woodhead Publishing Series in Food Science, Technology and Nutrition. pp: 3-22. doi:https://doi.org/10.1016/B978-1-78242-075-0.00001-6
- Kambiranda, D., Obuya, J., Snowden, J. 2020. Grapevine Improvement through Biotechnology. IntechOpen. doi:10.5772/intechopen.91851
- Atak, A., 2024. Table grape breeding programs and new cultivars. Acta Hortic, 1385, 9-18
doi: 10.17660/ActaHortic.2024.1385.2
- Atak, Arif., 2024. "Climate change and adaptive strategies on viticulture (Vitis spp.)" Open Agriculture:9(1): 20220258. https://doi.org/10.1515/opag-2022-0258
- Toepfer, R., Hausmann, L., Harst, M., Maul, E., Zyprian, E., Eibach, R. 2011. New Horizons for Grapevine Breeding. Fruit, vegetable and cereal science and biotechnology. pp: 79-100.
- Atak, A., Ergönül, O., Dilli, Y., Kesgin, M. and Altındişli, A. (2023). Grapevine breeding studies in Turkey. Acta Hortic. 1370, 145-152. Doi: 10.17660/ActaHortic.2023.1370.18
- Reynolds, A. G., Reisch, B. I. 2015. Grapevine breeding in the Eastern United States. In Grapevine breeding programs for the wine industry. Woodhead Publishing. pp:3-22
- Bozkurt, A., Yağcı, A. 2022. A General Overview Of Grape Breedıng In Consıderatıon Of Lıterature From Past To Present. Chapters on Viticulture İksad Press pp: 3-24.
- Ruehl, E., Schmid, J., Eibach, R., Töpfer, R. 2015. Grapevine breeding programmes in Germany. In Grapevine breeding programs for the wine industry. Woodhead Publishing. pp:77-101.
- Manty, F., 2005. Hintergründe zur Entstehung der Bezeichnungen der Unterlagenselektionen von Sigmund Teleki und Franz Kober. Dtsch Weinbau Jahrb. pp:159-164.
- Bavaresco, L., Gardiman, M., Brancadoro, L., Espen, L., Failla, O., Scienza, A., & Testolin, R. ,2015. Grapevine breeding programs in Italy. In Grapevine breeding programs for the wine industry. Woodhead Publishing. pp: 135-157
- Ibáñez, J., Carreño, J., Yuste, J., & Martínez-Zapater, J. M., 2015. Grapevine breeding and clonal selection programmes in Spain. Grapevine breeding programs for the wine industry, Woodhead Publishing. pp: 183-209.
- Di Gaspero, G., Foria, S., 2015. Molecular grapevine breeding. Grapevine Breeding Programs for the Wine Industry, Woodhead Publishing. pp: 23-37
- Hyma, K. E., Barba, P., Wang, M., Londo, J. P., Acharya, C. B., Mitchell, S. E., . . . Reisch, B. , 2015. Heterozygous Mapping Strategy (HetMappS) for High Resolution Genotyping-By-Sequencing Markers: A Case Study in Grapevine. PloS One, 10:8, e0134880 doi:https://doi.org/10.1371/journal.pone.0134880
- İşçi, B. 2008. Asmada Qtl (Kantitatif Karakter Lokus) Analizi. Anadolu Ege Tarımsal Araştırma Enstitüsü Dergisi, 8:2:11-37.
- Şahin, Ö., & Kavuncu, O., 2019. QTL Analysis Methods. Kastamonu University Journal of Engineering and Sciences, 5:1:51-57
- Collard, B. C., Jahufer, M. Z., Brouwer, J. B., & Pang, E. C., 2005. An introduction to markers, quantitative trait loci (QTL) mapping and marker-assisted selection for crop improvement:the basic concepts. Euphytica, 142: 169-196
- Fanizza, G., Lamaj, F., Costantini, L., Chaabane, R., Grando, M. S., 2005. QTL analysis for fruit yield components in table grapes (Vitis vinifera). Theoretical and Applied Genetics, (111).
- Grzeskowiak, L., Costantini, L., Lorenzi, S., Grando, M. S., 2013. Candidate loci for phenology and fruitfulness contributing to the phenotypic variability observed in grapevine. Theoretical and Applied Genetics, 126, pp: 2763-2776
- Butiuc-Keul, A., Coste, A., 2023. Biotechnologies and Strategies for Grapevine Improvement. Horticulturae, 9:1. doi:https://doi.org/10.3390/horticulturae9010062
- Yang, S., Fresnedo-Ramírez, J., Sun, Q., Manns, D. C., Sacks, G. L., Mansfield, A. K., . . . Fennell, A. Y. 2016. Next generation mapping of enological traits in an F2 interspecific grapevine hybrid family. PLOS ONE. doi:https://doi.org/10.1371/journal.pone.0149560
- Bhat, J. A., Ali, S., Salgotra, R. K., Mir, Z., Dutta, S., Jadon, V., . . . Prabhu, K., 2016. Genomic Selection in the Era of Next Generation Sequencing for Complex Traits in Plant Breeding. Frontiers in Genetics, 7:221. doi:doi: 10.3389/fgene.2016.00221J.
- Gizachew, H. G., 2023. Genomic Selection: A Faster Strategy for Plant Breeding. IntechOpen. doi: 10.5772/intechopen.105398
- Meuwissen, T. H., Hayes, B. J., & Goddard, M. E., 2001. Prediction of total genetic value using genome-wide dense marker maps. Genetics, 157:4:1819–1829. doi:https://doi.org/10.1093/genetics/157.4.1819
- Poland, J., Endelman, J. B., Dawson, J. C., Rutkoski, J., Wu, S., Manes, Y., . . . Jannink, J.-L., 2012. Genomic Selection in Wheat Breeding using Genotyping-by-Sequencing. Plant Genome, 5:103-113. doi:10.3835/plantgenome2012.06.0006
- Campos, G., Chialva, C., Miras, S., & Lijavetzky, D., 2021. New Technologies and Strategies for Grapevine Breeding Through Genetic Transformation. Frontiers, Volume 12. doi:https://doi.org/10.3389/fpls.2021.767522
- Bouque, A., Torregrosa, L., Iocco, P., & Thomas, M. R., 2006. Grapevine (Vitis vinifera L.). K. Wang içinde, Agrobacterium Protocols Volume 2.Methods in Molecular Biology Humana Press, 344: 273–285. doi:10.1385/1-59745-131-2:273
- Capriotti, L., Baraldi, E., Mezzetti, B., Limera, C., & Sabbadini, S., 2020. Biotechnological Approaches: Gene Overexpression, Gene Silencing, and Genome Editing to Control Fungal and Oomycete Diseases in Grapevine. International Journal of Molecular Sciences,, 21:16:5071.
- Vıdal, J., Gomez, C., Cutanda, M., Shrestha, B., Bouquet, A., Thomas, M., & Torregrosa, L., 2010. Use of gene transfer technology for functional studies in grapevine. Australian Journal of Grape and Wine Research, 16:138-151.
- Dalla Costa, L., Malnoy, M., Lecourieux, D., Deluc, L., Ouaked-Lecourieux, F., Thomas, M., & Torregrosa, L. J.-M., 2019. The state-of-the-art of grapevine biotechnology and new breeding technologies (NBTS). OENO One, 53:2:189-212.
- Doyle, C., Higginbottom, K., Swif, T. A., Winfield, M., Bellas, C., Benito-Alifonso, D., . . . Whitney, H. M., 2019. A simple method for spray-on gene editing in planta. bioRxiv. doi: https://doi.org/10.1101/805036
- Malnoy, M., Viola, R., Jung, M.-H., Koo, O.-J., Kim, S., Kim, J.-S., . . . Kanchiswamy, C. N., 2016. DNA-free genetically edited grapevine and apple protoplast using CRISPR/Cas9 ribonucleoproteins. Frontiers in plant science, 7. doi:https://doi.org/10.3389/fpls.2016.01904
- Ren, F., Ren, C., Zhang, Z., Duan, W., Lecourieux, D., Li, S., Liang, Z., 2019. Efficiency optimization of CRISPR/Cas9-mediated targeted mutagenesis in grape. Frontiers in plant science, 1:10:612.
- Ren, C., Liu, X., Zhang, Z., Wang, Y., Duan, W., Li, S., Liang, Z., 2016. CRISPR/Cas9-mediated efficient targeted mutagenesis in Chardonnay (Vitis vinifera L.). Scientific reports, 6:1.
- Wang, X., Tu, M., Wang, D., Liu, J., Li, Y., Li, Z., . . . Wang, X., 2018. CRISPR/Cas9‐mediated efficient targeted mutagenesis in grape in the first generation. Plant biotechnology journal,, 16:4.
- Li, M.-Y., Jiao, Y.-T., Wang, Y.-T., Zhang, N., Wang, B.-B., Liu, R.-Q., . . . Liu, G.-T., 2020. CRISPR/Cas9-mediated VvPR4b editing decreases downy mildew resistance in grapevine (Vitis vinifera L.). Horticulture research, 7. doi:https://doi.org/10.1038/s41438-020-00371-4
- Nakajima, I., Ban, Y., Azuma, A., Onoue, N., Moriguchi, T., Yamamoto, T., . . . Endo, M., 2017. CRISPR/Cas9-mediated targeted mutagenesis in grape. PLoS One,. doi:https://doi.org/10.1371/journal.pone.0177966