Research Article
BibTex RIS Cite

Tuz Stresi Uygulanan Biber Türlerinde (C. annuum L., C. baccatum L. ve C. chinense Jacq.) Meyve Olgunlaşma Dönemlerinde Meydana Gelen Fizikokimyasal ve Renk Değişimleri

Year 2024, Volume: 53 Issue: 2, 71 - 79, 26.11.2024
https://doi.org/10.53471/bahce.1545211

Abstract

Bu çalışmada, tuz stresinin üç biber türünün (Capsicum annuum L., Capsicum. baccatum L. ve Capsicum chinense Jacq.) farklı olgunlaşma aşamalarındaki fizikokimyasal ve renk özellikleri üzerindeki etkisi incelenmiştir. Biberler yeşil, alacalı ve kırmızı olgunlaşma aşamalarında 0 mM, 50 mM ve 100 mM NaCl'e maruz bırakılmıştır. Sonuçlar, tuz stresinin nem içeriği, toplam kül, pH, titre edilebilir asitlik, su aktivitesi ve renk parametrelerini önemli ölçüde etkilediğini göstermiştir. C. chinense en yüksek nem içeriğine ve su aktivitesine sahipken, C. annuum daha yüksek toplam kül içeriği ve pigment yoğunluğu (ASTA değeri) göstermiştir. Meyveler olgunlaştıkça nem içeriği azalmış ve toplam kül içeriği artmıştır. Tuz stresi su aktivitesi, pH ve titre edilebilir asitlikte azalmaya neden olurken, yüksek tuz konsantrasyonları su kaybının artmasına ve meyve kalitesinde düşüşe yol açmıştır. Ayrıca, tuz stresi renk parametrelerini ve ASTA değerlerini azaltarak karotenoid pigment sentezinin baskılandığını göstermiştir. Çalışma, tuz stresi biberin fizyolojik ve biyokimyasal kalitesini olumsuz etkilediğinden, tuza toleranslı biber çeşitlerinin geliştirilmesinin önemini vurgulamaktadır. Bu bulgular, özellikle tuzlu topraklara sahip bölgelerde sürdürülebilir biber üretimi için uygun agronomik stratejilerin ve dikkatli çevresel izlemenin gerekli olduğunu göstermektedir. Sonuçlar, tuz stresinin biber meyve kalitesini etkilediği mekanizmalar hakkında değerli bilgiler sağlamakta ve mahsulün dayanıklılığını artırmak için yollar önermektedir.

References

  • Moharana, D.P., Singh, R.K., Kashyap, S.P., Rai, N., Bhardwaj, D.R., & Singh, A.K., 2021. Response of Solanaceous vegetables to increasing temperature and atmospheric CO₂. Advances in Research on Vegetable Production Under a Changing Climate, 1:91-111.
  • Svobodová, B., & Kuban, V., 2018. Solanaceae: A family well-known and still surprising. Phytochemicals in Vegetables, pp:296-372.
  • Chamikara, M.D.M., Dissanayake, D.R.R.P., Ishan, M., & Sooriyapathirana, S.D.S.S., 2016. Dietary, anticancer and medicinal properties of the phytochemicals in chili pepper (Capsicum spp.). Ceylon Journal of Science, 45(3).
  • Po, L.G., Siddiq, M., & Shahzad, T., 2018. Chili, peppers and paprika. Handbook of Vegetables and Vegetable Processing, 633-660.
  • Erol, Ü.H., Gümüş, P., & Arpacı, B.B., 2024. Comparative analysis of fatty acid profiles, phytochemical and mineral contents of pepper spice types in Türkiye. Mustafa Kemal Üniversitesi Tarım Bilimleri Dergisi, 29(1):133-147.
  • Bhatla, S.C., Lal, M.A., Shakya, R., & Lal, M.A., 2018. Fruit development and ripening. Plant Physiology, Development and Metabolism, pp:857-883.
  • Navarro, J.M., Flores, P., Garrido, C., & Martinez, V., 2006. Changes in the contents of antioxidant compounds in pepper fruits at different ripening stages, as affected by salinity. Food Chemistry, 96(1):66-73.
  • Pérez‐López, A.J., del Amor, F.M., Serrano‐Martínez, A., Fortea, M.I., & Núñez‐Delicado, E., 2007. Influence of agricultural practices on the quality of sweet pepper fruits as affected by the maturity stage. Journal of the Science of Food and Agriculture, 87(11):2075-2080.
  • Shahid, M.A., Sarkhosh, A., Khan, N., Balal, R.M., Ali, S., Rossi, L., ... & Garcia-Sanchez, F., 2020. Insights into the physiological and biochemical impacts of salt stress on plant growth and development. Agronomy, 10(7):938.
  • Navarro, J.M., Flores, P., Garrido, C., & Martinez, V., 2006. Changes in the contents of antioxidant compounds in pepper fruits at different ripening stages, as affected by salinity. Food Chemistry, 96(1):66-73.
  • Zamljen, T., Medic, A., Hudina, M., Veberic, R., & Slatnar, A., 2022. Salt stress differentially affects the primary and secondary metabolism of peppers (Capsicum annuum L.) according to the genotype, fruit part and salinity level. Plants, 11(7):853.
  • Kaya, C., & Higgs, D., 2003. Supplementary potassium nitrate improves salt tolerance in bell pepper plants. Journal of Plant Nutrition, 26(7):1367-1382.
  • Chartzoulakis, K., & Klapaki, G., 2000. Response of two greenhouse pepper hybrids to NaCl salinity during different growth stages. Scientia Horticulturae, 86(3):247-260.
  • Aktas, H., Abak, K., & Cakmak, I., 2006. Genotypic variation in the response of pepper to salinity. Scientia Horticulturae, 110(3):260-266.
  • AOAC, 2005. Official method of Analysis. 18th Edition, Association of Officiating Analytical Chemists, Washington DC, Method 935.14 and 992.24.
  • AOAC, 1985. Official Methods of Analysis. 14th Edition, Association of Official Analytical Chemists, Washington DC, No.43.292. 7.001, 7.009, 7.006.
  • Bita, M.G., Ghivercea, V., Dinu, M., & Chilom, P., 2009. Biochemical Changes During Red Peppers Preservation Process as a Function of Water Activity. Revista de Chimie, 60(11):1181-1184.
  • AOAC-Method, 2000. Official method of analysis. Gaithersburg, MD, USA: Association of Official Analytical Chemists (No. 971.26 Colour (Extractable) in spices spectrophotometric method).
  • Demir, I., & Mavi, K., 2008. Effect of salt and osmotic stresses on the germination of pepper seeds of different maturation stages. Brazilian Archives of Biology and Technology, 51:897-902.
  • Kacjan Maršić, N., Štolfa, P., Vodnik, D., Košmelj, K., Mikulič-Petkovšek, M., Kump, B., ... & Šircelj, H., 2021. Physiological and biochemical responses of ungrafted and grafted bell pepper plants (Capsicum annuum L. var. grossum (L.) Sendtn.) grown under moderate salt stress. Plants, 10(2):314.
  • Yadav, S., Irfan, M., Ahmad, A., & Hayat, S., 2011. Causes of salinity and plant manifestations to salt stress: a review. Journal of Environmental Biology, 32(5): 667.
  • Kim, K.H., Yoon, J.B., Park, H.G., Park, E.W., & Kim, Y.H., 2004. Structural modifications and programmed cell death of chili pepper fruit related to resistance responses to Colletotrichum gloeosporioides infection. Phytopathology, 94(12):1295-1304.
  • Sarker, U., Islam, M.T., & Oba, S., 2018. Salinity stress accelerates nutrients, dietary fiber, minerals, phytochemicals and antioxidant activity in Amaranthus tricolor leaves. PLOS One, 13(11):e0206388.
  • Smith, A.M., Singh, S., & Ross, A.B., 2016. Fate of inorganic material during hydrothermal carbonisation of biomass: Influence of feedstock on combustion behaviour of hydrochar. Fuel, 169:135-145.
  • Albertini, M.V., Carcouet, E., Pailly, O., Gambotti, C., Luro, F., & Berti, L., 2006. Changes in organic acids and sugars during early stages of development of acidic and Acidless citrus fruit. Journal of Agricultural and Food Chemistry, 54(21):8335-8339.
  • Batista-Silva, W., Nascimento, V.L., Medeiros, D.B., Nunes-Nesi, A., Ribeiro, D.M., Zsögön, A., & Araújo, W.L., 2018. Modifications in organic acid profiles during fruit development and ripening: correlation or causation? Frontiers in Plant Science, 9:1689.
  • Msimbira, L.A., & Smith, D.L., 2020. The roles of plant growth promoting microbes in enhancing plant tolerance to acidity and alkalinity stresses. Frontiers in Sustainable Food Systems, 4:106.
  • Hao, S., Wang, Y., Yan, Y., Liu, Y., Wang, J., & Chen, S., 2021. A review on plant responses to salt stress and their mechanisms of salt resistance. Horticulturae, 7(6):132.
  • Panchal, P., Miller, A.J., & Giri, J., 2021. Organic acids: versatile stress-response roles in plants. Journal of Experimental Botany, 72(11):4038-4052.
  • Rahman, M.J., & Inden, H., 2012. Antioxidant content and quality of fruits as affected by nigari, an effluent of salt industries and fruit ages of sweet pepper (Capsicum annuum L.). Journal of Agricultural Science, 4(10):105.
  • McCoy, J.E., McHale, L.K., Kantar, M., Jardón-Barbolla, L., & Mercer, K.L., 2022. Environment of origin and domestication affect morphological, physiological and agronomic response to water deficit in chile pepper (Capsicum sp.). PLOS One, 17(6):e0260684.
  • Gallardo-Guerrero, L., Pérez-Gálvez, A., Aranda, E., Mínguez-Mosquera, M.I., & Hornero-Méndez, D., 2010. Physicochemical and microbiological characterization of the dehydration processing of red pepper fruits for paprika production. LWT-Food Science and Technology, 43(9):1359-1367.
  • Tapia, M.S., Alzamora, S.M., & Chirife, J., 2020. Effects of water activity (aw) on microbial stability as a hurdle in food preservation. Water Activity in Foods: Fundamentals and Applications, pp:323-355.
  • Pirasteh‐Anosheh, H., Ranjbar, G., Pakniyat, H., & Emam, Y., 2016. Physiological mechanisms of salt stress tolerance in plants: An overview. Plant‐Environment Interaction: Responses and Approaches to Mitigate Stress, pp:141-160.
  • Munns, R., 2002. Comparative physiology of salt and water stress. Plant, Cell & Environment, 25(2):239-250.
  • Acosta-Motos, J.R., Ortuño, M.F., Bernal-Vicente, A., Diaz-Vivancos, P., Sanchez-Blanco, M.J., & Hernandez, J.A., 2017. Plant responses to salt stress: adaptive mechanisms. Agronomy, 7(1): 18.
  • Singh, A., & Sharma, P.C., 2018. Recent insights into physiological and molecular regulation of salt stress in fruit crops. Adv. Plants Agric. Res, 8(2):171-183.
  • Wahyuni, Y., 2014. Breeding for pepper fruit quality: a genitical metabolomics approach. Wageningen University.
  • Erol, Ü.H., 2024-a. Comparison of morphological, biochemical and enzymatic responses of some capsicum species to drought stress during developmental stages. Russian Journal of Plant Physiology, 71(4):106.
  • Erol, Ü.H., 2024-b. Pepper fruits at different ripening periods have potential phyto‐biochemical and enzymatic responses to irrigation levels. Journal of Food Quality, 2024(1):9082436.
  • Kevrešan, Z.S., Mastilović, J.S., Mandić, A.I., & Torbica, A.M., 2013. Effect of different ripening conditions on pigments of pepper for paprika production at green stage of maturity. Journal of Agricultural and Food Chemistry, 61(38):9125-9130.
  • Ziaf, K., Amjad, M., Pervez, M.A., Iqbal, Q., Rajwana, I.A., & Ayyub, M., 2009. Evaluation of different growth and physiological traits as indices of salt tolerance in hot pepper (Capsicum annuum L.). Pak. J. Bot., 41(4):1797-1809.
  • Hugueney, P., Badillo, A., Chen, H.C., Klein, A., Hirschberg, J., Camara, B., & Kuntz, M., 1995. Metabolism of cyclic carotenoids: a model for the alteration of this biosynthetic pathway in Capsicum annuum chromoplasts. The Plant Journal, 8(3):417-424.
  • Hornero-Méndez, D., & Mínguez-Mosquera, M.I., 2000. Xanthophyll esterification accompanying carotenoid overaccumulation in chromoplast of Capsicum annuum ripening fruits is a constitutive process and useful for ripeness index. Journal of Agricultural and Food Chemistry, 48(5):1617-1622.
  • Amin, F., Al-Huqail, A.A., Ullah, S., Khan, M.N., Kaplan, A., Ali, B., ... & Abeed, A.H., 2024. Mitigation effect of alpha-tocopherol and thermo-priming in Brassica napus L. under induced mercuric chloride stress. BMC Plant Biology, 24(1):108.

Physicochemical and Color Changes During Fruit Ripening in Pepper Species (C. annuum L., C. baccatum L., and C. chinense Jacq.) Exposed to Salt Stress

Year 2024, Volume: 53 Issue: 2, 71 - 79, 26.11.2024
https://doi.org/10.53471/bahce.1545211

Abstract

This study examines the impact of salt stress on the physicochemical and color characteristics of three pepper species (Capsicum annuum L., Capsicum baccatum L., and Capsicum chinense Jacq.) at different ripening periods. Peppers were exposed to 0 mM, 50 mM, and 100 mM NaCl during the green, breaking, and red ripening periods. The results showed that salt stress significantly influenced moisture content, total ash, pH, titratable acidity, water activity, and color parameters. C. chinense had the highest moisture content and water activity, while C. annuum demonstrated a higher total ash content and pigment density (ASTA value). As fruits ripened, moisture content decreased, and total ash content increased. Salt stress caused reductions in water activity, pH, and titratable acidity, with high salt concentrations leading to increased water loss and a decline in fruit quality. Furthermore, salt stress reduced color parameters and ASTA values, indicating suppressed carotenoid pigment synthesis. The study highlights the importance of developing salt-tolerant pepper varieties, as salt stress negatively impacts the physiological and biochemical quality of peppers. These findings suggest that appropriate agronomic strategies and careful environmental monitoring are essential for sustainable pepper production, particularly in areas with saline soils. The results provide valuable insights into the mechanisms through which salt stress affects pepper fruit quality and suggest avenues for improving crop resilience.

References

  • Moharana, D.P., Singh, R.K., Kashyap, S.P., Rai, N., Bhardwaj, D.R., & Singh, A.K., 2021. Response of Solanaceous vegetables to increasing temperature and atmospheric CO₂. Advances in Research on Vegetable Production Under a Changing Climate, 1:91-111.
  • Svobodová, B., & Kuban, V., 2018. Solanaceae: A family well-known and still surprising. Phytochemicals in Vegetables, pp:296-372.
  • Chamikara, M.D.M., Dissanayake, D.R.R.P., Ishan, M., & Sooriyapathirana, S.D.S.S., 2016. Dietary, anticancer and medicinal properties of the phytochemicals in chili pepper (Capsicum spp.). Ceylon Journal of Science, 45(3).
  • Po, L.G., Siddiq, M., & Shahzad, T., 2018. Chili, peppers and paprika. Handbook of Vegetables and Vegetable Processing, 633-660.
  • Erol, Ü.H., Gümüş, P., & Arpacı, B.B., 2024. Comparative analysis of fatty acid profiles, phytochemical and mineral contents of pepper spice types in Türkiye. Mustafa Kemal Üniversitesi Tarım Bilimleri Dergisi, 29(1):133-147.
  • Bhatla, S.C., Lal, M.A., Shakya, R., & Lal, M.A., 2018. Fruit development and ripening. Plant Physiology, Development and Metabolism, pp:857-883.
  • Navarro, J.M., Flores, P., Garrido, C., & Martinez, V., 2006. Changes in the contents of antioxidant compounds in pepper fruits at different ripening stages, as affected by salinity. Food Chemistry, 96(1):66-73.
  • Pérez‐López, A.J., del Amor, F.M., Serrano‐Martínez, A., Fortea, M.I., & Núñez‐Delicado, E., 2007. Influence of agricultural practices on the quality of sweet pepper fruits as affected by the maturity stage. Journal of the Science of Food and Agriculture, 87(11):2075-2080.
  • Shahid, M.A., Sarkhosh, A., Khan, N., Balal, R.M., Ali, S., Rossi, L., ... & Garcia-Sanchez, F., 2020. Insights into the physiological and biochemical impacts of salt stress on plant growth and development. Agronomy, 10(7):938.
  • Navarro, J.M., Flores, P., Garrido, C., & Martinez, V., 2006. Changes in the contents of antioxidant compounds in pepper fruits at different ripening stages, as affected by salinity. Food Chemistry, 96(1):66-73.
  • Zamljen, T., Medic, A., Hudina, M., Veberic, R., & Slatnar, A., 2022. Salt stress differentially affects the primary and secondary metabolism of peppers (Capsicum annuum L.) according to the genotype, fruit part and salinity level. Plants, 11(7):853.
  • Kaya, C., & Higgs, D., 2003. Supplementary potassium nitrate improves salt tolerance in bell pepper plants. Journal of Plant Nutrition, 26(7):1367-1382.
  • Chartzoulakis, K., & Klapaki, G., 2000. Response of two greenhouse pepper hybrids to NaCl salinity during different growth stages. Scientia Horticulturae, 86(3):247-260.
  • Aktas, H., Abak, K., & Cakmak, I., 2006. Genotypic variation in the response of pepper to salinity. Scientia Horticulturae, 110(3):260-266.
  • AOAC, 2005. Official method of Analysis. 18th Edition, Association of Officiating Analytical Chemists, Washington DC, Method 935.14 and 992.24.
  • AOAC, 1985. Official Methods of Analysis. 14th Edition, Association of Official Analytical Chemists, Washington DC, No.43.292. 7.001, 7.009, 7.006.
  • Bita, M.G., Ghivercea, V., Dinu, M., & Chilom, P., 2009. Biochemical Changes During Red Peppers Preservation Process as a Function of Water Activity. Revista de Chimie, 60(11):1181-1184.
  • AOAC-Method, 2000. Official method of analysis. Gaithersburg, MD, USA: Association of Official Analytical Chemists (No. 971.26 Colour (Extractable) in spices spectrophotometric method).
  • Demir, I., & Mavi, K., 2008. Effect of salt and osmotic stresses on the germination of pepper seeds of different maturation stages. Brazilian Archives of Biology and Technology, 51:897-902.
  • Kacjan Maršić, N., Štolfa, P., Vodnik, D., Košmelj, K., Mikulič-Petkovšek, M., Kump, B., ... & Šircelj, H., 2021. Physiological and biochemical responses of ungrafted and grafted bell pepper plants (Capsicum annuum L. var. grossum (L.) Sendtn.) grown under moderate salt stress. Plants, 10(2):314.
  • Yadav, S., Irfan, M., Ahmad, A., & Hayat, S., 2011. Causes of salinity and plant manifestations to salt stress: a review. Journal of Environmental Biology, 32(5): 667.
  • Kim, K.H., Yoon, J.B., Park, H.G., Park, E.W., & Kim, Y.H., 2004. Structural modifications and programmed cell death of chili pepper fruit related to resistance responses to Colletotrichum gloeosporioides infection. Phytopathology, 94(12):1295-1304.
  • Sarker, U., Islam, M.T., & Oba, S., 2018. Salinity stress accelerates nutrients, dietary fiber, minerals, phytochemicals and antioxidant activity in Amaranthus tricolor leaves. PLOS One, 13(11):e0206388.
  • Smith, A.M., Singh, S., & Ross, A.B., 2016. Fate of inorganic material during hydrothermal carbonisation of biomass: Influence of feedstock on combustion behaviour of hydrochar. Fuel, 169:135-145.
  • Albertini, M.V., Carcouet, E., Pailly, O., Gambotti, C., Luro, F., & Berti, L., 2006. Changes in organic acids and sugars during early stages of development of acidic and Acidless citrus fruit. Journal of Agricultural and Food Chemistry, 54(21):8335-8339.
  • Batista-Silva, W., Nascimento, V.L., Medeiros, D.B., Nunes-Nesi, A., Ribeiro, D.M., Zsögön, A., & Araújo, W.L., 2018. Modifications in organic acid profiles during fruit development and ripening: correlation or causation? Frontiers in Plant Science, 9:1689.
  • Msimbira, L.A., & Smith, D.L., 2020. The roles of plant growth promoting microbes in enhancing plant tolerance to acidity and alkalinity stresses. Frontiers in Sustainable Food Systems, 4:106.
  • Hao, S., Wang, Y., Yan, Y., Liu, Y., Wang, J., & Chen, S., 2021. A review on plant responses to salt stress and their mechanisms of salt resistance. Horticulturae, 7(6):132.
  • Panchal, P., Miller, A.J., & Giri, J., 2021. Organic acids: versatile stress-response roles in plants. Journal of Experimental Botany, 72(11):4038-4052.
  • Rahman, M.J., & Inden, H., 2012. Antioxidant content and quality of fruits as affected by nigari, an effluent of salt industries and fruit ages of sweet pepper (Capsicum annuum L.). Journal of Agricultural Science, 4(10):105.
  • McCoy, J.E., McHale, L.K., Kantar, M., Jardón-Barbolla, L., & Mercer, K.L., 2022. Environment of origin and domestication affect morphological, physiological and agronomic response to water deficit in chile pepper (Capsicum sp.). PLOS One, 17(6):e0260684.
  • Gallardo-Guerrero, L., Pérez-Gálvez, A., Aranda, E., Mínguez-Mosquera, M.I., & Hornero-Méndez, D., 2010. Physicochemical and microbiological characterization of the dehydration processing of red pepper fruits for paprika production. LWT-Food Science and Technology, 43(9):1359-1367.
  • Tapia, M.S., Alzamora, S.M., & Chirife, J., 2020. Effects of water activity (aw) on microbial stability as a hurdle in food preservation. Water Activity in Foods: Fundamentals and Applications, pp:323-355.
  • Pirasteh‐Anosheh, H., Ranjbar, G., Pakniyat, H., & Emam, Y., 2016. Physiological mechanisms of salt stress tolerance in plants: An overview. Plant‐Environment Interaction: Responses and Approaches to Mitigate Stress, pp:141-160.
  • Munns, R., 2002. Comparative physiology of salt and water stress. Plant, Cell & Environment, 25(2):239-250.
  • Acosta-Motos, J.R., Ortuño, M.F., Bernal-Vicente, A., Diaz-Vivancos, P., Sanchez-Blanco, M.J., & Hernandez, J.A., 2017. Plant responses to salt stress: adaptive mechanisms. Agronomy, 7(1): 18.
  • Singh, A., & Sharma, P.C., 2018. Recent insights into physiological and molecular regulation of salt stress in fruit crops. Adv. Plants Agric. Res, 8(2):171-183.
  • Wahyuni, Y., 2014. Breeding for pepper fruit quality: a genitical metabolomics approach. Wageningen University.
  • Erol, Ü.H., 2024-a. Comparison of morphological, biochemical and enzymatic responses of some capsicum species to drought stress during developmental stages. Russian Journal of Plant Physiology, 71(4):106.
  • Erol, Ü.H., 2024-b. Pepper fruits at different ripening periods have potential phyto‐biochemical and enzymatic responses to irrigation levels. Journal of Food Quality, 2024(1):9082436.
  • Kevrešan, Z.S., Mastilović, J.S., Mandić, A.I., & Torbica, A.M., 2013. Effect of different ripening conditions on pigments of pepper for paprika production at green stage of maturity. Journal of Agricultural and Food Chemistry, 61(38):9125-9130.
  • Ziaf, K., Amjad, M., Pervez, M.A., Iqbal, Q., Rajwana, I.A., & Ayyub, M., 2009. Evaluation of different growth and physiological traits as indices of salt tolerance in hot pepper (Capsicum annuum L.). Pak. J. Bot., 41(4):1797-1809.
  • Hugueney, P., Badillo, A., Chen, H.C., Klein, A., Hirschberg, J., Camara, B., & Kuntz, M., 1995. Metabolism of cyclic carotenoids: a model for the alteration of this biosynthetic pathway in Capsicum annuum chromoplasts. The Plant Journal, 8(3):417-424.
  • Hornero-Méndez, D., & Mínguez-Mosquera, M.I., 2000. Xanthophyll esterification accompanying carotenoid overaccumulation in chromoplast of Capsicum annuum ripening fruits is a constitutive process and useful for ripeness index. Journal of Agricultural and Food Chemistry, 48(5):1617-1622.
  • Amin, F., Al-Huqail, A.A., Ullah, S., Khan, M.N., Kaplan, A., Ali, B., ... & Abeed, A.H., 2024. Mitigation effect of alpha-tocopherol and thermo-priming in Brassica napus L. under induced mercuric chloride stress. BMC Plant Biology, 24(1):108.
There are 45 citations in total.

Details

Primary Language English
Subjects Vegetable Growing and Treatment
Journal Section Makaleler
Authors

Ümit Haydar Erol 0000-0001-6126-5844

Publication Date November 26, 2024
Submission Date September 7, 2024
Acceptance Date September 24, 2024
Published in Issue Year 2024 Volume: 53 Issue: 2

Cite

APA Erol, Ü. H. (2024). Physicochemical and Color Changes During Fruit Ripening in Pepper Species (C. annuum L., C. baccatum L., and C. chinense Jacq.) Exposed to Salt Stress. Bahçe, 53(2), 71-79. https://doi.org/10.53471/bahce.1545211
AMA Erol ÜH. Physicochemical and Color Changes During Fruit Ripening in Pepper Species (C. annuum L., C. baccatum L., and C. chinense Jacq.) Exposed to Salt Stress. Bahçe. November 2024;53(2):71-79. doi:10.53471/bahce.1545211
Chicago Erol, Ümit Haydar. “Physicochemical and Color Changes During Fruit Ripening in Pepper Species (C. Annuum L., C. Baccatum L., and C. Chinense Jacq.) Exposed to Salt Stress”. Bahçe 53, no. 2 (November 2024): 71-79. https://doi.org/10.53471/bahce.1545211.
EndNote Erol ÜH (November 1, 2024) Physicochemical and Color Changes During Fruit Ripening in Pepper Species (C. annuum L., C. baccatum L., and C. chinense Jacq.) Exposed to Salt Stress. Bahçe 53 2 71–79.
IEEE Ü. H. Erol, “Physicochemical and Color Changes During Fruit Ripening in Pepper Species (C. annuum L., C. baccatum L., and C. chinense Jacq.) Exposed to Salt Stress”, Bahçe, vol. 53, no. 2, pp. 71–79, 2024, doi: 10.53471/bahce.1545211.
ISNAD Erol, Ümit Haydar. “Physicochemical and Color Changes During Fruit Ripening in Pepper Species (C. Annuum L., C. Baccatum L., and C. Chinense Jacq.) Exposed to Salt Stress”. Bahçe 53/2 (November 2024), 71-79. https://doi.org/10.53471/bahce.1545211.
JAMA Erol ÜH. Physicochemical and Color Changes During Fruit Ripening in Pepper Species (C. annuum L., C. baccatum L., and C. chinense Jacq.) Exposed to Salt Stress. Bahçe. 2024;53:71–79.
MLA Erol, Ümit Haydar. “Physicochemical and Color Changes During Fruit Ripening in Pepper Species (C. Annuum L., C. Baccatum L., and C. Chinense Jacq.) Exposed to Salt Stress”. Bahçe, vol. 53, no. 2, 2024, pp. 71-79, doi:10.53471/bahce.1545211.
Vancouver Erol ÜH. Physicochemical and Color Changes During Fruit Ripening in Pepper Species (C. annuum L., C. baccatum L., and C. chinense Jacq.) Exposed to Salt Stress. Bahçe. 2024;53(2):71-9.

BAHCE Journal
bahcejournal@gmail.com
https://bahcejournal.org
Atatürk Horticultural Central Research Institute, Yalova 77100 TÜRKİYE
X (Twitter)LinkedinFacebookInstagram