Research Article
BibTex RIS Cite

Anti-Virulence Potential of Some Medicinal Plants from the Lamiaceae Family Against Bacterial Fish Pathogens

Year 2025, Volume: 54 Issue: Özel Sayı 1, 222 - 230, 25.03.2025
https://doi.org/10.53471/bahce.1553311

Abstract

Plant extracts have been widely used in traditional medicine for centuries. The Lamiaceae family, including plants such as Turkish oregano (Origanum onites), Anatolian sage (Salvia fruticosa), and marjoram (Origanum majorana), is highly valued for its antimicrobial properties. These plants are recognized as GRAS (Generally Recognized as Safe) and are significant in the food, pharmaceutical, and healthcare industries. Their strong bactericidal, antifungal, anti-biofilm, and anti-quorum sensing activities make them notable for both traditional and modern applications. This study investigated the chemical composition of the extracts derived from Turkish oregano, Anatolian sage, and marjoram, focusing on their effects against Vibrio spp., a major pathogen in aquaculture. Results showed that while Vibrio spp. were resistant to the hydrosol forms, the oil extracts of Turkish oregano and marjoram exhibited strong antimicrobial and anti-biofilm activity. Biofilm inhibition reached up to 85% at sublethal concentrations, and quorum sensing (QS) inhibition was observed in the AHL biosensor strain CV026. The findings suggest that these plant extracts, particularly in oil form, could serve as effective alternatives to traditional chemotherapeutics for managing Vibrio spp. infections in aquaculture. This approach offers a natural, sustainable solution to combat antimicrobial resistance in fish pathogens.

Project Number

1919B012220228

References

  • Gurib-Fakim, A. 2006. Medicinal plants: traditions of yesterday and drugs of tomorrow. Molecular Aspects of Medicine 27(1), 1-93.
  • Özbek, N. 1969. Deneme tekniği (1. sera denemesi, tekniği ve metotları). Ankara Üniversitesi Ziraat Fakültesi, Yayın No:406, Ankara, 346s.
  • Güner, K.G. 2015. Çeşitli aromatik bitkilerin, meyve kurutmada küf-maya gelişimi, fonksiyonel ve duyusal özeliklere etkileri.
  • Hamed, A.N., Attia, E., Desoukey, S.Y. 2021. A review on various classes of secondary metabolites and biological activities of Lamiaceae (Labiatae) (2002-2018). Journal of advanced Biomedical and Pharmaceutical Sciences 4(1), 16-31.
  • Misra, P., John, S.A., Marker, S., Agnihotry, S., Srivastav, A.K., Sagar, A., Shukla, P.K. 2024. Therapeutic applications and pharmacological practices of essential oils. Aromatherapy: The Science of Essential Oils, 207.
  • Riaz, U., Iqbal, S., Sohail, M.I., Samreen, T., Ashraf, M., Akmal, F., ... & Akhter, R.M. 2021. A comprehensive review on emerging importance and economical potential of medicinal and aromatic plants (MAPs) in current scenario.
  • Saad, N.Y., Muller, C.D., Lobstein, A. 2013. Major bioactivities and mechanism of action of essential oils and their components. Flavour and Fragrance Journal 28(5), 269-279.
  • Moghaddam, M., Mehdizadeh, L. 2017. Chemistry of essential oils and factors influencing their constituents. In Soft Chemistry and Food Fermentation, pp:379-419, Academic Press.
  • Reddy, D.N. 2019. Essential oils extracted from medicinal plants and their applications. Natural Bio-Active Compounds: Vol.1, Production and Applications, 237-283.
  • Tadese, D.A., Song, C., Sun, C., Liu, B., Liu, B., Zhou, Q., ... & Kevin, N.T. 2022. The role of currently used medicinal plants in aquaculture and their action mechanisms: A review. Reviews in Aquaculture, 14(2), 816-847.
  • Pradeepkiran, J.A. 2019. Aquaculture role in global food security with nutritional value: a review. Translational Animal Science 3(2), 903-910.
  • Mitra, A., Abdel-Gawad, F.K., Bassem, S., Barua, P., Assisi, L., Parisi, C., ... & Guerriero, G. 2023. Climate change and reproductive biocomplexity in fishes: innovative management approaches towards sustainability of fisheries and aquaculture. Water 15(4), 725.
  • Dar, G.H., Bhat, R.A., Qadri, H., Al-Ghamdi, K.M., Hakeem, K.R. (Eds.). 2022. Bacterial fish diseases. Academic Press.
  • Ina‐Salwany, M.Y., Al‐saari, N., Mohamad, A., Mursidi, F.A., Mohd‐Aris, A., Amal, M.N.A., ... & Zamri‐Saad, M. 2019. Vibriosis in fish: a review on disease development and prevention. Journal of Aquatic Animal Health 31(1), 3-22.
  • Varalakshmi, B., Shanmugapriya, A., Karpagam, T., Suganya, V., Firdous, J., Arumugam, V.A., ... & Saradhasri, V. 2022. Bacterial fish diseases and treatment. In Aquaculture Science and Engineering, pp:517-572. Singapore: Springer Nature Singapore.
  • Yasin, I.S.M., Mohamad, A., Azzam-Sayuti, M. 2023. Control of fish diseases using antibiotics and other antimicrobial agents. In Recent Advances in Aquaculture Microbial Technology pp:127-152, Academic Press.
  • Scarafile, G. 2016. Antibiotic resistance: current issues and future strategies. Reviews in Health Care 7(1), 3-16.
  • Hossain, A., Habibullah-Al-Mamun, M., Nagano, I., Masunaga, S., Kitazawa, D., Matsuda, H. 2022. Antibiotics, antibiotic-resistant bacteria, and resistance genes in aquaculture: risks, current concern, and future thinking. Environmental Science and Pollution Research, 1-22.
  • Jindal, A.K., Pandya, K., Khan, I.D. 2015. Antimicrobial resistance: a public health challenge. Medical Journal Armed Forces India, 71(2), 178-181.
  • Chrisolite, B., Thiyagarajan, S., Alavandi, S.V., Abhilash, E.C., Kalaimani, N., Vijayan, K.K., Santiago, T.C. 2008. Distribution of luminescent Vibrio harveyi and their bacteriophages in a commercial shrimp hatchery in South India. Aquaculture, 275(1-4), 13-19.
  • Moo, C.L., Yang, S.K., Yusoff, K., Ajat, M., Thomas, W., Abushelaibi, A., ... & Lai, K.S. 2020. Mechanisms of antimicrobial resistance (AMR) and alternative approaches to overcome AMR. Current Drug Discovery Technologies, 17(4), 430-447.
  • Borugă, O., Jianu, C., Mişcă, C., Goleţ, I., Gruia, A.T., Horhat, F.G. 2014. Thymus vulgaris essential oil: chemical composition and antimicrobial activity. Journal of Medicine and Life 7(Spec Iss 3), 56.
  • Yaşa, İ., Lkhagvajav, N., Koizhaiganova, M., Çelik, E., Sarı, Ö. 2012. Assessment of antimicrobial activity of nanosized Ag doped TiO 2 colloids. World Journal of Microbiology and Biotechnology, 28, 2531-2539.
  • Bulut, G., Yaşa, İ., Eren Eroğlu, A.E. 2023. Selection and molecular response of AHL-lactonase (aiiA) producing Bacillus sp. under penicillin G-induced conditions. The Protein Journal 42(4), 427-436.
  • Oramadike, C.E., Ogunbanwo, S.T. 2017. Antagonistic activity of Thymus vulgaris extracts against Vibrio species isolated from seafoods. Journal of Food Science and Technology 54(5), 1199-1205.
  • Mancini, E., Senatore, F., Del Monte, D., De Martino, L., Grulova, D., Scognamiglio, M., ... & De Feo, V. 2015. Studies on chemical composition, antimicrobial and antioxidant activities of five Thymus vulgaris L. essential oils. Molecules 20(7), 12016-12028.
  • Tohidpour, A., Sattari, M., Omidbaigi, R., Yadegar, A., Nazemi, J. 2010. Antibacterial effect of essential oils from two medicinal plants against methicillin-resistant Staphylococcus aureus (MRSA). Phytomedicine 17(2), 142-145.
  • Yılmaz, Y.B., Tunaz, H. 2013. Bazı bitki uçucu yağlarının ve monoterpenoid bileşenlerinin Amerikan hamamböceği, Periplaneta americana (Dictyoptera: Blattidae), erginlerine karşı fumigant toksisitesi. Turkish Journal of Entomology 37(3), 319-328.
  • Miladinović, D., Miladinović, L.J. 2000. Antimicrobial activity of essential oil of sage from Serbia. Facta Universitatis-Series: Physics, Chemistry and Technology 2(2), 97-100.
  • Kowero, E.E., Leweri, C., Chacha, M. 2016. Evaluation of antibacterial activity of five selected medicinal plants in Tanzania against Gram negative bacteria. Eur. J. Med. Plant 12(2):1-7.
  • Galvao, R.F.F., Costa, J.G.M., Rodrigues, F.F.G., Campos, A.R. 2013. Study of the interference between Plectranthus species essential oils from Brazil and aminoglycosides. Evid-Based Compl. Alt., pp:1-7.

Lamiaceae Familyasına Ait Bazı Medikal Bitkilerin Bakteriyel Balık Patojenlerine Karşı Anti-Virülans Potansiyeli

Year 2025, Volume: 54 Issue: Özel Sayı 1, 222 - 230, 25.03.2025
https://doi.org/10.53471/bahce.1553311

Abstract

Bitki özleri, geleneksel tıpta yıllardır yaygın olarak kullanılmaktadır. Lamiaceae familyası, tıp, gıda, ilaç endüstrisinde kullanılan aromatik bitkileri içerir. Bu türler gıda olarak tüketilirken, aromatik özellikleriyle de geleneksel tıbbın vazgeçilmez parçası olarak değerlendirilmektedir. Sağlık ve endüstriyel ürünlerde GRAS (Güvenli) kabul edilen Lamiaceae türleri ekonomik botanik açısından da önemlidir. İzmir kekiği (Origanum onites), Anadolu adaçayı (Salvia fruticosa), Mercanköşk (Origanum majorana) gibi Lamiaceae bitkilerinin güçlü bakterisidal, antifungal özellikleri bilinirken, bu bitkilerden sağlanan yağ ve hidrosol formdaki ekstraktların anti-biyofilm, antiquorum sensing özellikleri dikkat çekmektedir. Çalışmada bu ekstraktların; kimyasal içerik analizleri, bakteriyel virülansın temelini oluşturan Quorum sensing (QS) ve biyofilm aktivitelerinin inhibisyonuna odaklanılmıştır. Sonuç olarak İzmir kekiği, Anadolu adaçayı ve Mercanköşk bitki ekstraktlarının hidrosol formlarına karşı Vibrio spp.’nin dirençli olduğu belirlenmiştir. Vibrio spp.’ye karşı en etkili formun İzmir kekiği ve mercanköşk yağ ekstraktı olduğu ortaya konmuş ve ½ MIC (Subletal) konsantrasyonunda biyofilm inhibisyonu %85 tespit edilmiştir. İzmir Kekiği ve Mercanköşk’ün çalışmadaki tüm Vibrio türleri üzerinde antimikrobiyal, anti-biyofilm etkisi gösterirken ayrıca AHL biyosensör suşu CV026’da QS mekanizmasını inhibe etmiştir. Akuakültür çiftliklerinde toplu balık ölümleriyle ilişkilendirilen Vibrio spp. patojen suşlarıyla mücadelede doğal bir yaklaşım olarak bitki ekstraktlarının etkinliği gösterilmiştir. Bulgular bu yaklaşımın antimikrobiyallere dirençli balık patojenlerine yönelik, bitkisel ekstraktların kemoterapötiklere alternatif tedavi edici araçlar olarak kullanılmasını desteklemektedir.

Supporting Institution

TÜBİTAK

Project Number

1919B012220228

Thanks

Bu çalışmanın bir kısmı Tübitak 2209-A Üniversite Öğrencileri Araştırma Projeleri Destekleme Programı tarafından 1919B012220228 numaralı proje ile desteklenmiştir. Ayrıca, Balıkesir Çiftçi Araştırma ve Eğitim Merkezine (BAÇEM) çalışmamıza verdikleri destek için teşekkürlerimizi sunarız.

References

  • Gurib-Fakim, A. 2006. Medicinal plants: traditions of yesterday and drugs of tomorrow. Molecular Aspects of Medicine 27(1), 1-93.
  • Özbek, N. 1969. Deneme tekniği (1. sera denemesi, tekniği ve metotları). Ankara Üniversitesi Ziraat Fakültesi, Yayın No:406, Ankara, 346s.
  • Güner, K.G. 2015. Çeşitli aromatik bitkilerin, meyve kurutmada küf-maya gelişimi, fonksiyonel ve duyusal özeliklere etkileri.
  • Hamed, A.N., Attia, E., Desoukey, S.Y. 2021. A review on various classes of secondary metabolites and biological activities of Lamiaceae (Labiatae) (2002-2018). Journal of advanced Biomedical and Pharmaceutical Sciences 4(1), 16-31.
  • Misra, P., John, S.A., Marker, S., Agnihotry, S., Srivastav, A.K., Sagar, A., Shukla, P.K. 2024. Therapeutic applications and pharmacological practices of essential oils. Aromatherapy: The Science of Essential Oils, 207.
  • Riaz, U., Iqbal, S., Sohail, M.I., Samreen, T., Ashraf, M., Akmal, F., ... & Akhter, R.M. 2021. A comprehensive review on emerging importance and economical potential of medicinal and aromatic plants (MAPs) in current scenario.
  • Saad, N.Y., Muller, C.D., Lobstein, A. 2013. Major bioactivities and mechanism of action of essential oils and their components. Flavour and Fragrance Journal 28(5), 269-279.
  • Moghaddam, M., Mehdizadeh, L. 2017. Chemistry of essential oils and factors influencing their constituents. In Soft Chemistry and Food Fermentation, pp:379-419, Academic Press.
  • Reddy, D.N. 2019. Essential oils extracted from medicinal plants and their applications. Natural Bio-Active Compounds: Vol.1, Production and Applications, 237-283.
  • Tadese, D.A., Song, C., Sun, C., Liu, B., Liu, B., Zhou, Q., ... & Kevin, N.T. 2022. The role of currently used medicinal plants in aquaculture and their action mechanisms: A review. Reviews in Aquaculture, 14(2), 816-847.
  • Pradeepkiran, J.A. 2019. Aquaculture role in global food security with nutritional value: a review. Translational Animal Science 3(2), 903-910.
  • Mitra, A., Abdel-Gawad, F.K., Bassem, S., Barua, P., Assisi, L., Parisi, C., ... & Guerriero, G. 2023. Climate change and reproductive biocomplexity in fishes: innovative management approaches towards sustainability of fisheries and aquaculture. Water 15(4), 725.
  • Dar, G.H., Bhat, R.A., Qadri, H., Al-Ghamdi, K.M., Hakeem, K.R. (Eds.). 2022. Bacterial fish diseases. Academic Press.
  • Ina‐Salwany, M.Y., Al‐saari, N., Mohamad, A., Mursidi, F.A., Mohd‐Aris, A., Amal, M.N.A., ... & Zamri‐Saad, M. 2019. Vibriosis in fish: a review on disease development and prevention. Journal of Aquatic Animal Health 31(1), 3-22.
  • Varalakshmi, B., Shanmugapriya, A., Karpagam, T., Suganya, V., Firdous, J., Arumugam, V.A., ... & Saradhasri, V. 2022. Bacterial fish diseases and treatment. In Aquaculture Science and Engineering, pp:517-572. Singapore: Springer Nature Singapore.
  • Yasin, I.S.M., Mohamad, A., Azzam-Sayuti, M. 2023. Control of fish diseases using antibiotics and other antimicrobial agents. In Recent Advances in Aquaculture Microbial Technology pp:127-152, Academic Press.
  • Scarafile, G. 2016. Antibiotic resistance: current issues and future strategies. Reviews in Health Care 7(1), 3-16.
  • Hossain, A., Habibullah-Al-Mamun, M., Nagano, I., Masunaga, S., Kitazawa, D., Matsuda, H. 2022. Antibiotics, antibiotic-resistant bacteria, and resistance genes in aquaculture: risks, current concern, and future thinking. Environmental Science and Pollution Research, 1-22.
  • Jindal, A.K., Pandya, K., Khan, I.D. 2015. Antimicrobial resistance: a public health challenge. Medical Journal Armed Forces India, 71(2), 178-181.
  • Chrisolite, B., Thiyagarajan, S., Alavandi, S.V., Abhilash, E.C., Kalaimani, N., Vijayan, K.K., Santiago, T.C. 2008. Distribution of luminescent Vibrio harveyi and their bacteriophages in a commercial shrimp hatchery in South India. Aquaculture, 275(1-4), 13-19.
  • Moo, C.L., Yang, S.K., Yusoff, K., Ajat, M., Thomas, W., Abushelaibi, A., ... & Lai, K.S. 2020. Mechanisms of antimicrobial resistance (AMR) and alternative approaches to overcome AMR. Current Drug Discovery Technologies, 17(4), 430-447.
  • Borugă, O., Jianu, C., Mişcă, C., Goleţ, I., Gruia, A.T., Horhat, F.G. 2014. Thymus vulgaris essential oil: chemical composition and antimicrobial activity. Journal of Medicine and Life 7(Spec Iss 3), 56.
  • Yaşa, İ., Lkhagvajav, N., Koizhaiganova, M., Çelik, E., Sarı, Ö. 2012. Assessment of antimicrobial activity of nanosized Ag doped TiO 2 colloids. World Journal of Microbiology and Biotechnology, 28, 2531-2539.
  • Bulut, G., Yaşa, İ., Eren Eroğlu, A.E. 2023. Selection and molecular response of AHL-lactonase (aiiA) producing Bacillus sp. under penicillin G-induced conditions. The Protein Journal 42(4), 427-436.
  • Oramadike, C.E., Ogunbanwo, S.T. 2017. Antagonistic activity of Thymus vulgaris extracts against Vibrio species isolated from seafoods. Journal of Food Science and Technology 54(5), 1199-1205.
  • Mancini, E., Senatore, F., Del Monte, D., De Martino, L., Grulova, D., Scognamiglio, M., ... & De Feo, V. 2015. Studies on chemical composition, antimicrobial and antioxidant activities of five Thymus vulgaris L. essential oils. Molecules 20(7), 12016-12028.
  • Tohidpour, A., Sattari, M., Omidbaigi, R., Yadegar, A., Nazemi, J. 2010. Antibacterial effect of essential oils from two medicinal plants against methicillin-resistant Staphylococcus aureus (MRSA). Phytomedicine 17(2), 142-145.
  • Yılmaz, Y.B., Tunaz, H. 2013. Bazı bitki uçucu yağlarının ve monoterpenoid bileşenlerinin Amerikan hamamböceği, Periplaneta americana (Dictyoptera: Blattidae), erginlerine karşı fumigant toksisitesi. Turkish Journal of Entomology 37(3), 319-328.
  • Miladinović, D., Miladinović, L.J. 2000. Antimicrobial activity of essential oil of sage from Serbia. Facta Universitatis-Series: Physics, Chemistry and Technology 2(2), 97-100.
  • Kowero, E.E., Leweri, C., Chacha, M. 2016. Evaluation of antibacterial activity of five selected medicinal plants in Tanzania against Gram negative bacteria. Eur. J. Med. Plant 12(2):1-7.
  • Galvao, R.F.F., Costa, J.G.M., Rodrigues, F.F.G., Campos, A.R. 2013. Study of the interference between Plectranthus species essential oils from Brazil and aminoglycosides. Evid-Based Compl. Alt., pp:1-7.
There are 31 citations in total.

Details

Primary Language Turkish
Subjects Horticultural Production (Other)
Journal Section Makaleler
Authors

Ümran Deveci 0000-0002-7728-2013

Yunus Uyanik 0009-0005-0447-7855

İhsan Yaşa 0000-0002-0477-1377

Project Number 1919B012220228
Publication Date March 25, 2025
Submission Date September 20, 2024
Acceptance Date December 24, 2024
Published in Issue Year 2025 Volume: 54 Issue: Özel Sayı 1

Cite

APA Deveci, Ü., Uyanik, Y., & Yaşa, İ. (2025). Lamiaceae Familyasına Ait Bazı Medikal Bitkilerin Bakteriyel Balık Patojenlerine Karşı Anti-Virülans Potansiyeli. Bahçe, 54(Özel Sayı 1), 222-230. https://doi.org/10.53471/bahce.1553311
AMA Deveci Ü, Uyanik Y, Yaşa İ. Lamiaceae Familyasına Ait Bazı Medikal Bitkilerin Bakteriyel Balık Patojenlerine Karşı Anti-Virülans Potansiyeli. Bahçe. March 2025;54(Özel Sayı 1):222-230. doi:10.53471/bahce.1553311
Chicago Deveci, Ümran, Yunus Uyanik, and İhsan Yaşa. “Lamiaceae Familyasına Ait Bazı Medikal Bitkilerin Bakteriyel Balık Patojenlerine Karşı Anti-Virülans Potansiyeli”. Bahçe 54, no. Özel Sayı 1 (March 2025): 222-30. https://doi.org/10.53471/bahce.1553311.
EndNote Deveci Ü, Uyanik Y, Yaşa İ (March 1, 2025) Lamiaceae Familyasına Ait Bazı Medikal Bitkilerin Bakteriyel Balık Patojenlerine Karşı Anti-Virülans Potansiyeli. Bahçe 54 Özel Sayı 1 222–230.
IEEE Ü. Deveci, Y. Uyanik, and İ. Yaşa, “Lamiaceae Familyasına Ait Bazı Medikal Bitkilerin Bakteriyel Balık Patojenlerine Karşı Anti-Virülans Potansiyeli”, Bahçe, vol. 54, no. Özel Sayı 1, pp. 222–230, 2025, doi: 10.53471/bahce.1553311.
ISNAD Deveci, Ümran et al. “Lamiaceae Familyasına Ait Bazı Medikal Bitkilerin Bakteriyel Balık Patojenlerine Karşı Anti-Virülans Potansiyeli”. Bahçe 54/Özel Sayı 1 (March 2025), 222-230. https://doi.org/10.53471/bahce.1553311.
JAMA Deveci Ü, Uyanik Y, Yaşa İ. Lamiaceae Familyasına Ait Bazı Medikal Bitkilerin Bakteriyel Balık Patojenlerine Karşı Anti-Virülans Potansiyeli. Bahçe. 2025;54:222–230.
MLA Deveci, Ümran et al. “Lamiaceae Familyasına Ait Bazı Medikal Bitkilerin Bakteriyel Balık Patojenlerine Karşı Anti-Virülans Potansiyeli”. Bahçe, vol. 54, no. Özel Sayı 1, 2025, pp. 222-30, doi:10.53471/bahce.1553311.
Vancouver Deveci Ü, Uyanik Y, Yaşa İ. Lamiaceae Familyasına Ait Bazı Medikal Bitkilerin Bakteriyel Balık Patojenlerine Karşı Anti-Virülans Potansiyeli. Bahçe. 2025;54(Özel Sayı 1):222-30.

BAHCE Journal
bahcejournal@gmail.com
https://bahcejournal.org
Atatürk Horticultural Central Research Institute, Yalova 77100 TÜRKİYE
X (Twitter)LinkedinFacebookInstagram