Review
BibTex RIS Cite

Use of LED Lighting Sources in Ornamental Plant Cultivation

Year 2025, Volume: 54 Issue: Özel Sayı 1, 559 - 566, 25.03.2025
https://doi.org/10.53471/bahce.1559586

Abstract

The ornamental plant industry covers a large number of plants with various types of aesthetic values. The economic impact of this sector has also considerable importance. Despite the economic size of the ornamental plant market, there are problems to be solved and improvements in plant production are necessary. In addition, the ornamental plant sector is faced with multiple challenges such as globalization of the market, uncertainties related to climate change, and land use competition. In terms of both economic and sustainability, the use and effectiveness of controlled environment systems, greenhouses, soilless systems, fully closed spaces and LED artificial light sources have gained great importance in the optimization of ornamental plant production with the results of research conducted in recent years. This situation allows environmental parameters to be addressed correctly using a technology-oriented approach. Light is the main environmental factor that coordinates plant growth and development with its importance in photosynthesis. In recent years, the effectiveness of artificial lighting applications, especially with LED technology in the desired wavelength and mixtures for plant cultivation, has begun to be seen. In addition, as a complementary source when solar radiation is weak, it provides energy for photosynthesis as a single light source and can regulate plant development stages and flowering processes. By regulating light properties such as amount (intensity), period (photoperiod) and spectral composition; it is possible to achieve important ornamental plant production targets such as regulating flowering and plant development as desired, controlling plant architecture, shortening the production season, affecting leaf and flower colors, ensuring longevity, and extending shelf life. Apart from standard supplementary lighting in plant production alone, many important effects such as rapid development, regulating vegetation period, flower formation, increased leafing, regulating growth phases, color formation, dwarfing, and extending vase life have begun to emerge. Research on this subject has shown a rapid increase in recent years. In this research, the results of LED lighting sources, which have gained importance in ornamental plant production, different wavelengths and mixtures on ornamental plants and their effectiveness, especially in recent years, have been revealed with literature studies.

References

  • Sajjad, Y., Jaskani, M.J., Asis, M., Qasim, M. 2017. Application of plant growth regulators in ornamental plants: a review. Pak. J. Agri. Sci., 54(2):327-333.
  • Riaz, A., Batool, Z., Younis, A., Abid, L. 2002. Green areas: a source of healthy environment for people and value addition to property. Int. J. Agric. Biol. 4:478-481.
  • Memon, N., Qasim, M., Jaskani, M.J., Khooharo, A.A., Hussain, Z., Ahmad, I. 2013. Comparison of various explants on the basis of efficient shoot regeneration in gladiolus. Pak. J. Bot. 45:877-885.
  • Trivellini, A., Toscana, S., Romano, D., Ferrante, A. 2023. LED lighting to produce high-quality ornamental plants. Plants 12(8).
  • Global Flower and Ornamental Plants Industry Research Report 2023. Competitive Landscape, Market Size, Regional Status and Prospect; Market Reports World, Absolute Reports; Market Reports World: Pune, India, pp:107.
  • Ferrante, A., Trivellini, A., Scuderi, D., Romano, D., Vernieri, P. 2015. Post-production physiology and handling of ornamental potted plants. Postharvest Biol. Technol. 100:99-108.
  • Hill, J., Von Maltitz, G., Sommer, S., Reynolds, J., Hutchinson, C., Cherlet, M. 2018. World atlas of desertification. Publications Office of the European Union: Luxembourg.
  • Van Delden, S.H., SharathKumar, M., Butturini, M., Graamans, L.J.A., Heuvelink, E., Kacira, M., Kaiser, E., Klamer, R.S., Klerkx, L., Kootstra, G., Loeber A., Schouten, R.E., Stanghellini, C., van Ieperen, W., Verdonk, J.C., Vialet-Chabrand, S., Woltering, E.J., van de Zedde, R., Zhang, Y., Marcelis, L.F.M. 2021. Current status and future challenges in implementing and upscaling vertical farming systems. Nat. Food 2:944-956.
  • Xu, Y. 2019. Nature and source of light for plant factory. Plant factory using artificial light, Elsevier, Amsterdam, The Netherlands, pp:47-69.
  • Çakırer, G., Akan, S., Demir, K., Yanmaz, R. 2017. Bahçe bitkilerinde kullanılan ışık kaynakları. Akademik Ziraat Dergisi 6:63-70.
  • Demir, K., Sarıkamış, G., Çakırer Seyrek, G. 2023. Effect of LED lights on the growth, nutritional quality and glucosinolate content of broccoli, cabbage and radish microgreens. Food Chemistry 401, 134088.
  • Massa, G.D., Kim, H.H., Wheeler, R.M., Mitchell, C.A., Cary, A. 2008. Plant productivity in response to LED lighting. HortScience 43:1951-1956.
  • Zheng, L., He, H., Song, W. 2019. Application of light-emitting diodes and the effect of light quality on horticultural crops: A review. HortScience 54:1656-1661.
  • Paradiso, R., Proietti, S. 2021. Light-quality manipulation to control plant growth and photomorphogenesis in greenhouse horticulture: The state of the art and the opportunities of modern LED systems. J. Plant Growth Regul. 41:742-780.
  • Islam, M.A., Kuwar, G., Clarke, J.L., Blystad, D.R., Gislerød, H.R., Olsen, J.E., Torre, S. 2012. Artificial light from light emitting diodes (LEDs) with a high portion of blue light results in shorter poinsettias compared to high pressure sodium (HPS) lamps. Sci. Hort. 147:136-143.
  • Singh, D., Basu, C., Meinhardt-Wollweber, M., Roth, B. 2015. LEDs for energy efficient greenhouse lighting. Renew. Sustain. Energy Rev. 49:139-147.
  • Bula, R.J., Morrow, R.C., Tibbitts, T.W., Barta, D.J., Ignatius, R.W., Martin, T.S. 1991. Light-emitting diodes as a radiation source for plants. HortScience 26:203-205.
  • Çakırer Seyrek, G., Demir, K. 2024. Urban agriculture and LED lighting. Ahi Evran International Congress on Scientific Research, 26-28 April 2024, Kirsehir Ahi Evran University, Kirsehir, Türkiye.
  • Morrow, R.C. 2008. LED lighting in horticulture. HortScience 43:1947-1950.
  • Karabourniotis, G., Liakopoulos, G., Bresta, P., Nikolopoulos, D. 2021. The optical properties of leaf structural elements and their contribution to photosynthetic performance and photoprotection. Plants 10, 1455.
  • Paradiso, R., Proietti, S. 2022. Light-quality manipulation to control plant growth and photomorphogenesis in greenhouse horticulture: the state of the art and the opportunities of Modern LED systems. J. Plant Growth Regul. 41:742-780.
  • Kopsell, D.A., Kopsell, D.E. 2008. Genetic and environmental factors affecting plant lutein/zeaxantin. Agro Food Ind. Hi-Tech 19:44-46.
  • Piovene, C., Orsini, F., Bosi, S., Sanoubar, R., Bregola, V. Dinelli, G., Gianquinto, G. 2015. Optimal red:blue ratio in led lighting for nutraceutical indoor horticulture. Scientia Horticulturae 193:202-208.
  • Goto, E. 2012. Plant production in a closed plant factory with artificial lighting. Acta Hort. 956:37-49.
  • Hernàndez, R., Kubota, C. 2012. Tomato seedling growth and morphological responses to supplemental LED lighting red:blue ratios under varied daily solar light integrals. Acta Hort. 956:187-194.
  • Paucek, I., Appolloni, E., Pennisi, G., Quaini, S., Gianquinto, G., Orsini, F. 2020. LED lighting systems for horticulture: business growth and global distribution. Sustainability 12(8):7516.
  • Morrow, R.C. 2008. LED lighting in horticulture. Hortscience 43:1947-1950.
  • Gupta, S.D., Agarwal, A. 2017. Artificial lighting system for plant growth and development: chronological advancement, working principles, and comparative assessment. Light Emitting Diodes for Agriculture: Smart Lighting. Springer, Singapore, pp:1-25.
  • Fylladitakis, E.D. 2023. Controlled LED lighting for horticulture: a review. Open J. Appl. Sci. 13:175-188.
  • Tymoszuk, A., Kulus, D., Błażejewska,, A., Nadolna, K., Kulpińska, A., Pietrzykowski, K. 2023. Application of wide-spectrum light-emitting diodes in the indoor production of cucumber and tomato seedlings. Acta Agrobot. 76, 762.
  • Rahman, M.M., Field, D.L., Ahmed, S.M., Hasan, M.T., Basher, M.K., Alameh, K. 2021. LED illumination for high-quality high-yield crop growth in protected cropping environments. Plants 10, 2470.
  • Sena, S., Kumari, S., Kumar, V., Husen, A. 2024. Light emitting diode (LED) lights for the improvement of plant performance and production: A comprehensive review. Current Research in Biotechnology 7, 100184.
  • Mohr, H., Schopfer, P. 1995. Plant physiology. Springer, Berlin, Germany.
  • Krug, H., 2002. Environmental influences on development, growth and yield. The Physiology of Vegetable Crops, CABI Publishing, New York, pp:101-181.
  • Castilla, N. 2005. Invernaderos de plástico, tecnología y manejo. Ediciones, MundiPrensa, Madrid, Spain.
  • Larcher, W. 2001. Physiological plant ecology. 4th edn., Springer, Stuttgart.
  • Ballaré, C.L., Casal, J.J. 2000. Light signals perceived by crop and weed plants. Field Crop Research, 67:149-160.
  • Warner, R.M., Erwin, J.E. 2003. Effect of photoperiod and daily light integral on flowering of five Hibiscus sp. Scientia Horticulturae 97:341-351.
  • Pérez, M., da Silva, T.J.A., Lao, M.T. 2006. Light Management in Ornamental Crops. Floriculture, Ornamental and Plant Biotechnology. Cilt IV, Global Science Books, UK.
  • Conover, C.A., Poole, R.T. 1990. Light and fertilizer recommendations for production of acclimatized potted foliage plants. Foliage Digest 13:1-6.
  • Tanaka, Y., Sasaki, N., Ohmiya, A. 2008. Biosynthesis of plant pigments: anthocyanins, betalains and carotenoids. Plant J. Cell Mol. Biol. 54:733-749.
  • Tilney-Bassett, R.A.E. 1986. Plant Chimeras. Cambridge University Press, Cambridge, UK.
  • Kim, J., Kang, S.W., Pak, C.H., Kim, M.S. 2012. Changes in leaf variegation and coloration of english ivy and polka dot plant under various indoor light intensities. HortTechnology 22:49-55.
  • De Keyser, E., Dhooghe, E., Christiaens, A., Van Labeke, M.C., Van Huylenbroeck, J. 2019. LED light quality intensifies leaf pigmentation in ornamental pot plants. Scientia Horticulturae 253:270-275.
  • Shi, J., Zhan, S., Jin, L., Zhou, Q., Shen, Y., Wan, X., Zou, L., Dong, Q., Bao, M., Tian, D., Ning, G., Ge, Y. 2023. Blue light exposure intensifies leaf red pigmentation and enhances oxidative stress tolerance in the ornamental bromeliad Neoregelia ‘Fireball’. Scientia Horticulturae 310, 111716.
  • Runkle, E.S., Heins, R.D. 2006. Manipulating the light environment to control flowering and morphogenesis of herbaceous plants. Acta Hort. 711:51-60.
  • Fausey, B.A., Heins, R.D., Cameron, A.C. 2005. Daily light integral affects flowering and quality of greenhouse-grown Achillea, Gaura, and Lavandula. HortScience 40:114-118.
  • Faust, J.E., Holcombe, V., Rajapakse, N.C., Layne, D.R. 2005. The effect of daily light integral on bedding plant growth and flowering. HortScience 40:645-649.
  • Pramuk, L.A., Runkle, E.S. 2005. Modeling growth and development of celosia and impatiens in response to temperature and photosynthetic daily light integral. J. Amer. Soc. Hort. Sci. 130:813-818.
  • Armitage, A.M., Wetzstein, H.Y. 1984. Influence of light intensity on flower initiation and differentiation in hybrid geranium. HortScience 19: 114-116.
  • In, B.C., Lim, J.H. 2018. Potential vase life of cut roses: Seasonal variation and relationships with growth conditions, phenotypes, and gene expressions. Postharvest Biol. Technol. 135:93-103.
  • Jiang, A., Zuo, J., Zheng, Q., Guo, L., Gao, L., Zhao, S., Wang, Q., Hu, W. 2019. Red LED irradiation maintains the postharvest quality of broccoli by elevating antioxidant enzyme activity and reducing the expression of senescence-related genes. Sci. Hort. 251:73-79.
  • Jerzy, M., Zakrzewski, P., Schroeter-Zakrzewska, A. 2011. Effect of colour of light on the opening of inflorescence buds and post-harvest longevity of pot chrysanthemums (Chrysanthemum grandiflorum (Ramat.) Kitam). Acta Agrobot. 64:13-18.
  • Heo, J.W., Chakrabarty, D., Paek, K.Y. 2004. Longevity and quality of cut ‘Master’ carnation and ‘Red Sandra’ rose flowers as affected by red light. Plant Growth Regul. 42(2):169-174.
  • Lim, M.K., Lee, H.J., Kim, W.S. 2017. Effects of ultraviolet A (UVA) + light emitting diode (LED) irradiation on the cut flower quality and vase life of the oriental Hybrid Lily ‘Siberia’ simulated exportation. Flower Res. J. 25(3):118-123.
  • Evelyn, S., Farrell, A.D., Elibox, W., De Abreu, K., Umaharan, P. 2020. The impact of light on vase life in (Anthurium andraeanum Hort.) cut flowers. Postharvest Biol. Technol. 159, 110984.
  • Rezai, S., Sabzalian, M.R., Nikbakht, A., Zarei, H. 2024. Red LED light improved the vase life of cut rose flowers during cold storage. Postharvest Biology and Technology 210, 112752.
  • Lin, C.T. 2000. Photoreceptors and regulation of flowering time. Plant Physiol. 123:39-50.
  • Higuchi, Y., Narumi, T., Oda, A., Nakano, Y., Sumitomo, K., Fukai, S., Hisamatsu, T. 2013. The gated induction system of a systemic floral inhibitor, antiflorigen, determines obligate short-day flowering in chrysanthemums. Proc. Natl. Acad. Sci. USA 110:17137-17142.
  • Stack, P.A., Drummond, F.A., Stack, L.B. 1998. Chrysanthemum flowering in a blue light supplemented long day maintained for biocontrol of thrips. Hortscience 33:710-715.
  • Jeong, S.W., Park, S., Jin, J.S., Seo, O.N., Kim, G.S., Kim, Y.H., Bae, H., Lee, G., Kim, S.T., Lee, W.S., Shin, S.C. 2012. Influences of four different light-emitting diode lights on flowering and polyphenol variations in the leaves of chrysanthemum (Chrysanthemum morifolium). J. Agric. Food Chem. 60:9793-9800.
  • Nissim-Levi A., Kitron, M., Nishri, Y., Ovadia, R., Forer, I., Oren-Shamir, M. 2019. Effects of blue and red LED lights on growth and flowering of Chrysanthemum morifolium. Scientia Horticulturae 254:77-83.
  • Sumitomo, K., Higuchi, Y., Aoki, K., Miyamae, H., Oda, A., Ishiwata, M., Yamada, M., Nakayama, M., Hisamatsu, T. 2012. Spectral sensitivity of flowering and FT-like gene expression in response to night-break light treatments in the chrysanthemum cultivar,’ Reagan’. J. Hort. Sci. Biotech. 87:461-469.
  • Currey, C.J., Hutchinson, V.A., Lopez, R.G. 2012. Growth, morphology, and quality of rooted cuttings of several herbaceous annual bedding plants are influenced by photosynthetic daily light integral during root development. HortScience 47:25-30.
  • Hernández, R., Kubota, C. 2016. Physiological responses of cucumber seedlings under different blue and red photon flux ratios using LEDs. Environ. Exp. Bot. 121:66-74.
  • Lopez, R., Runkle, E. 2017. Light management in controlled environments. Meister Media Worldwide. Willoughby, OH.
  • Mitchell, C.A., Dzakovich, M.P., Gomez, C., Lopez, R. 2015. Horticultural Reviews-Light-Emitting Diodes in Horticulture. Cilt.43, Horticultural Reviews, Wiley Blackwell.
  • Khattak, A.M., Pearson, S. 2006. Spectral filters and temperature effects on the growth and development of chrysanthemums under low light integral. Plant Growth Regul. 49:61-68.
  • Lund, J.B., Blom, T.J., Aaslyng, J.M. 2007. End-of-day lighting with different Red/Farred ratios using light emitting diodes affects plant growth of Chrysanthemum × morifolium Ramat. ‘Coral charm’. Hortscience 42:1609-1611.
  • Hisamatsu, T., Sumitomo, K., Shimizu, H. 2008. End-of-day far-red treatment enhances responsiveness to gibberellins and promotes stem extension in chrysanthemum. J. Hort. Sci. Biotech. 83:695-700.
  • Poel, B.R., Runkle, E.S. 2017. Spectral effects of supplemental greenhouse radiation on growth and flowering of annual bedding plants and vegetable transplants. HortScience 52:1221-1228.
  • Currey, C.J., Lopez, R.G. 2013. Cuttings of impatiens, pelargonium, and petunia propagated under light-emitting diodes and high-pressure sodium lamps have comparable growth, morphology, gas exchange, and post-transplant performance. HortScience 48:428-434.
  • Kobori, M.M.R.G., Mello, S.D.C., Freitas, I.S.D., Silveira, F.F., Alves, M.C., Azevedo, R.A. 2022. Supplemental light with different blue and red ratios in the physiology, yield and quality of Impatiens. Sci. Hort. 306, 111424.
  • Christiaens, A., Van Labeke, M.C., Gobin, B., Van Huylenbroeck, J. 2015. Rooting of ornamental cuttings affected by spectral light quality. Acta Hort. 1104:219-224.
  • Park, Y., Gómez, C., Runkle, E.S. 2022. Indoor production of ornamental seedlings, vegetable transplants, and microgreens. Plant Factory Basics, Applications and Advances, Chapter 19, Elsevier Inc.
  • Appolloni, E., Orsini, F., Pennisi, G., Gabarrell Durany, X., Paucek, I., Gianquinto, G. 2021. Supplemental LED lighting effectively enhances the yield and quality of greenhouse truss tomato production: Results of a meta-analysis. Frontiers in Plant Science 12, 596927.
  • Marcelis, L.F.M., Costa, J.M., Heuvelink, E. 2019. Achieving sustainable greenhouse production: Present status, recent advances and future developments. Achieving Sustainable Greenhouse Cultivation 1-14.
  • Javadi Asayesh, E., Aliniaeifard, S., Askari, N., Roozban, M.R., Sobhani, M., Tsaniklidis, G., Woltering, E.J., Fanourakis, D. 2021. Supplementary light with increased blue fraction accelerates emergence and improves development of the inflorescence in Aechmea, Guzmania and Vriesea. Horticulturae 7(11):485.
  • Aalifar, M., Aliniaeifard, S., Arab, M., Zare Mehrjerdi, M., Dianati Daylami, S., Serek, M., Woltering, E., Li, T. 2020. Blue light improves vase life of carnation cut flowers through its effect on the antioxidant defense system. Frontiers in Plant Science 11, 511.
  • Aliniaeifard, S., Falahi, Z., Dianati Daylami, S., Li, T., Woltering, E. 2020. Postharvest spectral light composition affects chilling injury in anthurium cut flowers. Frontiers in Plant Science 11, 846.

Süs Bitkileri Yetiştiriciliğinde LED Aydınlatma Kaynaklarının Kullanımı

Year 2025, Volume: 54 Issue: Özel Sayı 1, 559 - 566, 25.03.2025
https://doi.org/10.53471/bahce.1559586

Abstract

Süs bitkileri endüstrisi, çok sayıda çeşitli türlerde estetik değerleri olan bitkileri kapsamaktadır. Bu sektörün ekonomik etkisi de dikkate değer bir öneme sahiptir. Süs bitkileri pazarının ekonomik büyüklüğüne rağmen çözülmesi gereken sorunlar ve bitki üretiminde iyileştirmeler gerekli olmaktadır. Ayrıca, süs bitkileri sektörü, pazarın küreselleşmesi, iklim değişikliğiyle ilgili belirsizlikler, arazi kullanım rekabeti gibi birden fazla zorlukla da karşı karşıya kalmaktadır. Hem ekonomik hem de sürdürülebilirlik açısından süs bitkileri üretiminin optimizasyonunda kontrollü ortam sistemleri, seralar, topraksız sistemler, tam kapalı mekanlar ve LED yapay ışık kaynaklarının kullanımı ve etkinlikleri son yıllarda yapılan araştırma sonuçlarıyla büyük önem kazanmıştır. Bu durum teknoloji odaklı bir yaklaşım kullanılarak çevresel parametrelerin doğru bir şekilde ele alınmasına olanak tanımaktadır. Işık, fotosentezde sahip olduğu önemi ile bitki büyümesini ve gelişimini koordine eden temel çevresel faktördür. Son yıllarda bitki yetiştiriciliği için özelikle LED teknolojisiyle istenilen dalga boyunda ve karışımlarında yapay aydınlatmanın uygulamalarında etkinlikleri görülmeye başlanmıştır. Ayrıca güneş radyasyonunun zayıf olduğu zamanlarda tamamlayıcı bir kaynak olarak da tek başına bir ışık kaynağı olarak fotosentez için enerji sağlamakta ve bitki gelişim evrelerini, çiçeklenme süreçlerini düzenleyebilmektedir. Miktar (yoğunluk), süre (fotoperiyot) ve spektral kompozisyon gibi ışık özelliklerini düzenleyerek; çiçeklenmeyi, bitki gelişimini arzu edilen şekilde düzenleyebilmek, bitki mimarisini kontrol etmek, üretim sezonunu kısaltabilmek, yaprak ve çiçek renklerini etkileyebilmek, uzun ömürlülüğü sağlamak, raf ömrünü uzatmak gibi önemli süs bitkileri üretim hedeflerine ulaşmak mümkün olabilmektedir. Yalnızca bitkisel üretimde standart ek aydınlatma dışında, hızlı gelişim, vejetasyon süresini düzenleme, çiçek oluşumu, yapraklanma artışı, büyüme evrelerinin düzenlenmesi, renk oluşumları, bodurlaşma, vazo ömrünü uzatma gibi çok sayıda önemli etkiler ortaya çıkarılmaya başlanmıştır. Bu konuda son yıllarda araştırmalar hızlı bir artış göstermiştir. Bu araştırmada da süs bitkileri üretiminde önem kazanan LED aydınlatma kaynaklarının, farklı dalga boyu ve karışımlarının süs bitkilerinde ki sonuçları ve yapılan literatür çalışmalarıyla özellikle son yıllardaki etkinlikleri ortaya konulmuştur.

References

  • Sajjad, Y., Jaskani, M.J., Asis, M., Qasim, M. 2017. Application of plant growth regulators in ornamental plants: a review. Pak. J. Agri. Sci., 54(2):327-333.
  • Riaz, A., Batool, Z., Younis, A., Abid, L. 2002. Green areas: a source of healthy environment for people and value addition to property. Int. J. Agric. Biol. 4:478-481.
  • Memon, N., Qasim, M., Jaskani, M.J., Khooharo, A.A., Hussain, Z., Ahmad, I. 2013. Comparison of various explants on the basis of efficient shoot regeneration in gladiolus. Pak. J. Bot. 45:877-885.
  • Trivellini, A., Toscana, S., Romano, D., Ferrante, A. 2023. LED lighting to produce high-quality ornamental plants. Plants 12(8).
  • Global Flower and Ornamental Plants Industry Research Report 2023. Competitive Landscape, Market Size, Regional Status and Prospect; Market Reports World, Absolute Reports; Market Reports World: Pune, India, pp:107.
  • Ferrante, A., Trivellini, A., Scuderi, D., Romano, D., Vernieri, P. 2015. Post-production physiology and handling of ornamental potted plants. Postharvest Biol. Technol. 100:99-108.
  • Hill, J., Von Maltitz, G., Sommer, S., Reynolds, J., Hutchinson, C., Cherlet, M. 2018. World atlas of desertification. Publications Office of the European Union: Luxembourg.
  • Van Delden, S.H., SharathKumar, M., Butturini, M., Graamans, L.J.A., Heuvelink, E., Kacira, M., Kaiser, E., Klamer, R.S., Klerkx, L., Kootstra, G., Loeber A., Schouten, R.E., Stanghellini, C., van Ieperen, W., Verdonk, J.C., Vialet-Chabrand, S., Woltering, E.J., van de Zedde, R., Zhang, Y., Marcelis, L.F.M. 2021. Current status and future challenges in implementing and upscaling vertical farming systems. Nat. Food 2:944-956.
  • Xu, Y. 2019. Nature and source of light for plant factory. Plant factory using artificial light, Elsevier, Amsterdam, The Netherlands, pp:47-69.
  • Çakırer, G., Akan, S., Demir, K., Yanmaz, R. 2017. Bahçe bitkilerinde kullanılan ışık kaynakları. Akademik Ziraat Dergisi 6:63-70.
  • Demir, K., Sarıkamış, G., Çakırer Seyrek, G. 2023. Effect of LED lights on the growth, nutritional quality and glucosinolate content of broccoli, cabbage and radish microgreens. Food Chemistry 401, 134088.
  • Massa, G.D., Kim, H.H., Wheeler, R.M., Mitchell, C.A., Cary, A. 2008. Plant productivity in response to LED lighting. HortScience 43:1951-1956.
  • Zheng, L., He, H., Song, W. 2019. Application of light-emitting diodes and the effect of light quality on horticultural crops: A review. HortScience 54:1656-1661.
  • Paradiso, R., Proietti, S. 2021. Light-quality manipulation to control plant growth and photomorphogenesis in greenhouse horticulture: The state of the art and the opportunities of modern LED systems. J. Plant Growth Regul. 41:742-780.
  • Islam, M.A., Kuwar, G., Clarke, J.L., Blystad, D.R., Gislerød, H.R., Olsen, J.E., Torre, S. 2012. Artificial light from light emitting diodes (LEDs) with a high portion of blue light results in shorter poinsettias compared to high pressure sodium (HPS) lamps. Sci. Hort. 147:136-143.
  • Singh, D., Basu, C., Meinhardt-Wollweber, M., Roth, B. 2015. LEDs for energy efficient greenhouse lighting. Renew. Sustain. Energy Rev. 49:139-147.
  • Bula, R.J., Morrow, R.C., Tibbitts, T.W., Barta, D.J., Ignatius, R.W., Martin, T.S. 1991. Light-emitting diodes as a radiation source for plants. HortScience 26:203-205.
  • Çakırer Seyrek, G., Demir, K. 2024. Urban agriculture and LED lighting. Ahi Evran International Congress on Scientific Research, 26-28 April 2024, Kirsehir Ahi Evran University, Kirsehir, Türkiye.
  • Morrow, R.C. 2008. LED lighting in horticulture. HortScience 43:1947-1950.
  • Karabourniotis, G., Liakopoulos, G., Bresta, P., Nikolopoulos, D. 2021. The optical properties of leaf structural elements and their contribution to photosynthetic performance and photoprotection. Plants 10, 1455.
  • Paradiso, R., Proietti, S. 2022. Light-quality manipulation to control plant growth and photomorphogenesis in greenhouse horticulture: the state of the art and the opportunities of Modern LED systems. J. Plant Growth Regul. 41:742-780.
  • Kopsell, D.A., Kopsell, D.E. 2008. Genetic and environmental factors affecting plant lutein/zeaxantin. Agro Food Ind. Hi-Tech 19:44-46.
  • Piovene, C., Orsini, F., Bosi, S., Sanoubar, R., Bregola, V. Dinelli, G., Gianquinto, G. 2015. Optimal red:blue ratio in led lighting for nutraceutical indoor horticulture. Scientia Horticulturae 193:202-208.
  • Goto, E. 2012. Plant production in a closed plant factory with artificial lighting. Acta Hort. 956:37-49.
  • Hernàndez, R., Kubota, C. 2012. Tomato seedling growth and morphological responses to supplemental LED lighting red:blue ratios under varied daily solar light integrals. Acta Hort. 956:187-194.
  • Paucek, I., Appolloni, E., Pennisi, G., Quaini, S., Gianquinto, G., Orsini, F. 2020. LED lighting systems for horticulture: business growth and global distribution. Sustainability 12(8):7516.
  • Morrow, R.C. 2008. LED lighting in horticulture. Hortscience 43:1947-1950.
  • Gupta, S.D., Agarwal, A. 2017. Artificial lighting system for plant growth and development: chronological advancement, working principles, and comparative assessment. Light Emitting Diodes for Agriculture: Smart Lighting. Springer, Singapore, pp:1-25.
  • Fylladitakis, E.D. 2023. Controlled LED lighting for horticulture: a review. Open J. Appl. Sci. 13:175-188.
  • Tymoszuk, A., Kulus, D., Błażejewska,, A., Nadolna, K., Kulpińska, A., Pietrzykowski, K. 2023. Application of wide-spectrum light-emitting diodes in the indoor production of cucumber and tomato seedlings. Acta Agrobot. 76, 762.
  • Rahman, M.M., Field, D.L., Ahmed, S.M., Hasan, M.T., Basher, M.K., Alameh, K. 2021. LED illumination for high-quality high-yield crop growth in protected cropping environments. Plants 10, 2470.
  • Sena, S., Kumari, S., Kumar, V., Husen, A. 2024. Light emitting diode (LED) lights for the improvement of plant performance and production: A comprehensive review. Current Research in Biotechnology 7, 100184.
  • Mohr, H., Schopfer, P. 1995. Plant physiology. Springer, Berlin, Germany.
  • Krug, H., 2002. Environmental influences on development, growth and yield. The Physiology of Vegetable Crops, CABI Publishing, New York, pp:101-181.
  • Castilla, N. 2005. Invernaderos de plástico, tecnología y manejo. Ediciones, MundiPrensa, Madrid, Spain.
  • Larcher, W. 2001. Physiological plant ecology. 4th edn., Springer, Stuttgart.
  • Ballaré, C.L., Casal, J.J. 2000. Light signals perceived by crop and weed plants. Field Crop Research, 67:149-160.
  • Warner, R.M., Erwin, J.E. 2003. Effect of photoperiod and daily light integral on flowering of five Hibiscus sp. Scientia Horticulturae 97:341-351.
  • Pérez, M., da Silva, T.J.A., Lao, M.T. 2006. Light Management in Ornamental Crops. Floriculture, Ornamental and Plant Biotechnology. Cilt IV, Global Science Books, UK.
  • Conover, C.A., Poole, R.T. 1990. Light and fertilizer recommendations for production of acclimatized potted foliage plants. Foliage Digest 13:1-6.
  • Tanaka, Y., Sasaki, N., Ohmiya, A. 2008. Biosynthesis of plant pigments: anthocyanins, betalains and carotenoids. Plant J. Cell Mol. Biol. 54:733-749.
  • Tilney-Bassett, R.A.E. 1986. Plant Chimeras. Cambridge University Press, Cambridge, UK.
  • Kim, J., Kang, S.W., Pak, C.H., Kim, M.S. 2012. Changes in leaf variegation and coloration of english ivy and polka dot plant under various indoor light intensities. HortTechnology 22:49-55.
  • De Keyser, E., Dhooghe, E., Christiaens, A., Van Labeke, M.C., Van Huylenbroeck, J. 2019. LED light quality intensifies leaf pigmentation in ornamental pot plants. Scientia Horticulturae 253:270-275.
  • Shi, J., Zhan, S., Jin, L., Zhou, Q., Shen, Y., Wan, X., Zou, L., Dong, Q., Bao, M., Tian, D., Ning, G., Ge, Y. 2023. Blue light exposure intensifies leaf red pigmentation and enhances oxidative stress tolerance in the ornamental bromeliad Neoregelia ‘Fireball’. Scientia Horticulturae 310, 111716.
  • Runkle, E.S., Heins, R.D. 2006. Manipulating the light environment to control flowering and morphogenesis of herbaceous plants. Acta Hort. 711:51-60.
  • Fausey, B.A., Heins, R.D., Cameron, A.C. 2005. Daily light integral affects flowering and quality of greenhouse-grown Achillea, Gaura, and Lavandula. HortScience 40:114-118.
  • Faust, J.E., Holcombe, V., Rajapakse, N.C., Layne, D.R. 2005. The effect of daily light integral on bedding plant growth and flowering. HortScience 40:645-649.
  • Pramuk, L.A., Runkle, E.S. 2005. Modeling growth and development of celosia and impatiens in response to temperature and photosynthetic daily light integral. J. Amer. Soc. Hort. Sci. 130:813-818.
  • Armitage, A.M., Wetzstein, H.Y. 1984. Influence of light intensity on flower initiation and differentiation in hybrid geranium. HortScience 19: 114-116.
  • In, B.C., Lim, J.H. 2018. Potential vase life of cut roses: Seasonal variation and relationships with growth conditions, phenotypes, and gene expressions. Postharvest Biol. Technol. 135:93-103.
  • Jiang, A., Zuo, J., Zheng, Q., Guo, L., Gao, L., Zhao, S., Wang, Q., Hu, W. 2019. Red LED irradiation maintains the postharvest quality of broccoli by elevating antioxidant enzyme activity and reducing the expression of senescence-related genes. Sci. Hort. 251:73-79.
  • Jerzy, M., Zakrzewski, P., Schroeter-Zakrzewska, A. 2011. Effect of colour of light on the opening of inflorescence buds and post-harvest longevity of pot chrysanthemums (Chrysanthemum grandiflorum (Ramat.) Kitam). Acta Agrobot. 64:13-18.
  • Heo, J.W., Chakrabarty, D., Paek, K.Y. 2004. Longevity and quality of cut ‘Master’ carnation and ‘Red Sandra’ rose flowers as affected by red light. Plant Growth Regul. 42(2):169-174.
  • Lim, M.K., Lee, H.J., Kim, W.S. 2017. Effects of ultraviolet A (UVA) + light emitting diode (LED) irradiation on the cut flower quality and vase life of the oriental Hybrid Lily ‘Siberia’ simulated exportation. Flower Res. J. 25(3):118-123.
  • Evelyn, S., Farrell, A.D., Elibox, W., De Abreu, K., Umaharan, P. 2020. The impact of light on vase life in (Anthurium andraeanum Hort.) cut flowers. Postharvest Biol. Technol. 159, 110984.
  • Rezai, S., Sabzalian, M.R., Nikbakht, A., Zarei, H. 2024. Red LED light improved the vase life of cut rose flowers during cold storage. Postharvest Biology and Technology 210, 112752.
  • Lin, C.T. 2000. Photoreceptors and regulation of flowering time. Plant Physiol. 123:39-50.
  • Higuchi, Y., Narumi, T., Oda, A., Nakano, Y., Sumitomo, K., Fukai, S., Hisamatsu, T. 2013. The gated induction system of a systemic floral inhibitor, antiflorigen, determines obligate short-day flowering in chrysanthemums. Proc. Natl. Acad. Sci. USA 110:17137-17142.
  • Stack, P.A., Drummond, F.A., Stack, L.B. 1998. Chrysanthemum flowering in a blue light supplemented long day maintained for biocontrol of thrips. Hortscience 33:710-715.
  • Jeong, S.W., Park, S., Jin, J.S., Seo, O.N., Kim, G.S., Kim, Y.H., Bae, H., Lee, G., Kim, S.T., Lee, W.S., Shin, S.C. 2012. Influences of four different light-emitting diode lights on flowering and polyphenol variations in the leaves of chrysanthemum (Chrysanthemum morifolium). J. Agric. Food Chem. 60:9793-9800.
  • Nissim-Levi A., Kitron, M., Nishri, Y., Ovadia, R., Forer, I., Oren-Shamir, M. 2019. Effects of blue and red LED lights on growth and flowering of Chrysanthemum morifolium. Scientia Horticulturae 254:77-83.
  • Sumitomo, K., Higuchi, Y., Aoki, K., Miyamae, H., Oda, A., Ishiwata, M., Yamada, M., Nakayama, M., Hisamatsu, T. 2012. Spectral sensitivity of flowering and FT-like gene expression in response to night-break light treatments in the chrysanthemum cultivar,’ Reagan’. J. Hort. Sci. Biotech. 87:461-469.
  • Currey, C.J., Hutchinson, V.A., Lopez, R.G. 2012. Growth, morphology, and quality of rooted cuttings of several herbaceous annual bedding plants are influenced by photosynthetic daily light integral during root development. HortScience 47:25-30.
  • Hernández, R., Kubota, C. 2016. Physiological responses of cucumber seedlings under different blue and red photon flux ratios using LEDs. Environ. Exp. Bot. 121:66-74.
  • Lopez, R., Runkle, E. 2017. Light management in controlled environments. Meister Media Worldwide. Willoughby, OH.
  • Mitchell, C.A., Dzakovich, M.P., Gomez, C., Lopez, R. 2015. Horticultural Reviews-Light-Emitting Diodes in Horticulture. Cilt.43, Horticultural Reviews, Wiley Blackwell.
  • Khattak, A.M., Pearson, S. 2006. Spectral filters and temperature effects on the growth and development of chrysanthemums under low light integral. Plant Growth Regul. 49:61-68.
  • Lund, J.B., Blom, T.J., Aaslyng, J.M. 2007. End-of-day lighting with different Red/Farred ratios using light emitting diodes affects plant growth of Chrysanthemum × morifolium Ramat. ‘Coral charm’. Hortscience 42:1609-1611.
  • Hisamatsu, T., Sumitomo, K., Shimizu, H. 2008. End-of-day far-red treatment enhances responsiveness to gibberellins and promotes stem extension in chrysanthemum. J. Hort. Sci. Biotech. 83:695-700.
  • Poel, B.R., Runkle, E.S. 2017. Spectral effects of supplemental greenhouse radiation on growth and flowering of annual bedding plants and vegetable transplants. HortScience 52:1221-1228.
  • Currey, C.J., Lopez, R.G. 2013. Cuttings of impatiens, pelargonium, and petunia propagated under light-emitting diodes and high-pressure sodium lamps have comparable growth, morphology, gas exchange, and post-transplant performance. HortScience 48:428-434.
  • Kobori, M.M.R.G., Mello, S.D.C., Freitas, I.S.D., Silveira, F.F., Alves, M.C., Azevedo, R.A. 2022. Supplemental light with different blue and red ratios in the physiology, yield and quality of Impatiens. Sci. Hort. 306, 111424.
  • Christiaens, A., Van Labeke, M.C., Gobin, B., Van Huylenbroeck, J. 2015. Rooting of ornamental cuttings affected by spectral light quality. Acta Hort. 1104:219-224.
  • Park, Y., Gómez, C., Runkle, E.S. 2022. Indoor production of ornamental seedlings, vegetable transplants, and microgreens. Plant Factory Basics, Applications and Advances, Chapter 19, Elsevier Inc.
  • Appolloni, E., Orsini, F., Pennisi, G., Gabarrell Durany, X., Paucek, I., Gianquinto, G. 2021. Supplemental LED lighting effectively enhances the yield and quality of greenhouse truss tomato production: Results of a meta-analysis. Frontiers in Plant Science 12, 596927.
  • Marcelis, L.F.M., Costa, J.M., Heuvelink, E. 2019. Achieving sustainable greenhouse production: Present status, recent advances and future developments. Achieving Sustainable Greenhouse Cultivation 1-14.
  • Javadi Asayesh, E., Aliniaeifard, S., Askari, N., Roozban, M.R., Sobhani, M., Tsaniklidis, G., Woltering, E.J., Fanourakis, D. 2021. Supplementary light with increased blue fraction accelerates emergence and improves development of the inflorescence in Aechmea, Guzmania and Vriesea. Horticulturae 7(11):485.
  • Aalifar, M., Aliniaeifard, S., Arab, M., Zare Mehrjerdi, M., Dianati Daylami, S., Serek, M., Woltering, E., Li, T. 2020. Blue light improves vase life of carnation cut flowers through its effect on the antioxidant defense system. Frontiers in Plant Science 11, 511.
  • Aliniaeifard, S., Falahi, Z., Dianati Daylami, S., Li, T., Woltering, E. 2020. Postharvest spectral light composition affects chilling injury in anthurium cut flowers. Frontiers in Plant Science 11, 846.
There are 80 citations in total.

Details

Primary Language Turkish
Subjects Horticultural Production (Other)
Journal Section Derlemeler
Authors

Gamze Çakırer Seyrek 0000-0002-6225-9208

Köksal Demir 0000-0001-6120-7249

Publication Date March 25, 2025
Submission Date October 1, 2024
Acceptance Date December 30, 2024
Published in Issue Year 2025 Volume: 54 Issue: Özel Sayı 1

Cite

APA Çakırer Seyrek, G., & Demir, K. (2025). Süs Bitkileri Yetiştiriciliğinde LED Aydınlatma Kaynaklarının Kullanımı. Bahçe, 54(Özel Sayı 1), 559-566. https://doi.org/10.53471/bahce.1559586
AMA Çakırer Seyrek G, Demir K. Süs Bitkileri Yetiştiriciliğinde LED Aydınlatma Kaynaklarının Kullanımı. Bahçe. March 2025;54(Özel Sayı 1):559-566. doi:10.53471/bahce.1559586
Chicago Çakırer Seyrek, Gamze, and Köksal Demir. “Süs Bitkileri Yetiştiriciliğinde LED Aydınlatma Kaynaklarının Kullanımı”. Bahçe 54, no. Özel Sayı 1 (March 2025): 559-66. https://doi.org/10.53471/bahce.1559586.
EndNote Çakırer Seyrek G, Demir K (March 1, 2025) Süs Bitkileri Yetiştiriciliğinde LED Aydınlatma Kaynaklarının Kullanımı. Bahçe 54 Özel Sayı 1 559–566.
IEEE G. Çakırer Seyrek and K. Demir, “Süs Bitkileri Yetiştiriciliğinde LED Aydınlatma Kaynaklarının Kullanımı”, Bahçe, vol. 54, no. Özel Sayı 1, pp. 559–566, 2025, doi: 10.53471/bahce.1559586.
ISNAD Çakırer Seyrek, Gamze - Demir, Köksal. “Süs Bitkileri Yetiştiriciliğinde LED Aydınlatma Kaynaklarının Kullanımı”. Bahçe 54/Özel Sayı 1 (March 2025), 559-566. https://doi.org/10.53471/bahce.1559586.
JAMA Çakırer Seyrek G, Demir K. Süs Bitkileri Yetiştiriciliğinde LED Aydınlatma Kaynaklarının Kullanımı. Bahçe. 2025;54:559–566.
MLA Çakırer Seyrek, Gamze and Köksal Demir. “Süs Bitkileri Yetiştiriciliğinde LED Aydınlatma Kaynaklarının Kullanımı”. Bahçe, vol. 54, no. Özel Sayı 1, 2025, pp. 559-66, doi:10.53471/bahce.1559586.
Vancouver Çakırer Seyrek G, Demir K. Süs Bitkileri Yetiştiriciliğinde LED Aydınlatma Kaynaklarının Kullanımı. Bahçe. 2025;54(Özel Sayı 1):559-66.

BAHCE Journal
bahcejournal@gmail.com
https://bahcejournal.org
Atatürk Horticultural Central Research Institute, Yalova 77100 TÜRKİYE
X (Twitter)LinkedinFacebookInstagram