Conference Paper
BibTex RIS Cite

Böğürtlenin Mikrodalga ve Sıcak Hava ile Kurutulması ve Kurutmanın Renk ve Askorbik Asit İçeriği Üzerine Etkisinin Belirlenmesi

Year 2017, Volume: 46 Issue: (Özel Sayı 1) 5. Uluslararası Üzümsü Meyveler Sempozyumu, 53 - 62, 31.12.2017

Abstract

Bu çalışma kapsamında yaş baza göre nemi %83.9±0.36 olan böğürtlen (Rubus plicatus L.) meyveleri 100±0.8 g ağırlığında tartılarak 850, 500 ve 160 W güç seviyelerinde mikrodalga yöntemiyle ve 50℃ sıcaklıkta konveksiyonel kurutma yöntemi ile yaş baza göre nemi %12.45±0.28 oluncaya dek kurutulmuştur. Kurutma işlemleri 850, 500 ve 160 W mikrodalga kurutma seviyeleri için sırasıyla 12.67, 27.17 ve 90.25 dakika; 50℃ sıcaklıkta yapılan kurutma işleminde ise 272.5 dakika sürmüştür. Yapılan kurutma işlemleri enerji tüketimi açısından incelenmiştir. Kurutma verileri altı farklı ince tabaka kurutma modeli ile modellenmiştir. Karar katsayısının (R²) en büyük olduğu, standart hata (SEE), ki kare (χ²) ve ortalama karesel hatanın (RMSE) en küçük olduğu model en iyi model olarak seçilmiştir. Çalışmada ayrıca mikrodalga ve sıcak hava kurutma tekniği ile kurutulan böğürtlen meyvesinin renk değerleri (L, a, b, C ve α) ve askorbik asit içeriği saptanmış olup taze ürünün renk ve askorbik asit değerleri ile karşılaştırmalı olarak verilmiştir. Buna göre taze ürüne en yakın renk değerinin 850 W mikrodalga güç seviyesinde, taze ürüne en yakın askorbik asit içeriğinin ise 500 W mikrodalga güç seviyesinde elde edildiği belirlenmiştir.

References

  • Alibas, I., 2012. Microwave Drying of Grapevine (Vitis vinifera L.) Leaves and Determination of Some Quality Parameters. Journal of Agricultural Sciences 18:43–53.
  • Alibaş, I. and N. Köksal, 2014. Convective, Vacuum and Microwave Drying Kinetics of Mallow Leaves and Comparison of Color and Ascorbic Acid Values of Three Drying Methods. Food Science and Technology 34(2):358–364.
  • Aral, S. and A. V. Beşe, 2016. Convective Drying of Hawthorn Fruit (Crataegus spp.): Effect of Experimental Parameters on Drying Kinetics, Color, Shrinkage, and Rehydration Capacity. Food Chemistry 210:577–584.
  • Brackmann, A., R. D. O. Anese, F. R. Thewes, D. Fronza and J. J. Hamann, 2016. Storability of ‘Tupy’ and ‘Guarani’ Blackberries in Controlled Atmosphere. Post-Harvest Technology 75(2):240–246.
  • Cia, P., I. U. Bron, S. R. T. Valentini, R. Pio and E. A. Chagas, 2007. Atmosfera Modificada e Refrigeraçao para Conservaçao Pos–Colheita da Amora–Preta. Bioscience Journal 23:11–16.
  • Cihan, A., K. Kahveci and O. Hacıhafızoğlu, 2007. Modelling of Intermittent Drying of Thin Layer Rough Rice. Journal of Food Engineering 79:2 93–298.
  • Dadali, G., E. Demirhan and B. Özbek, 2007. Color Change Kinetics of Spinach Undergoing Microwave Drying. Drying Technology 25:1713–1723.
  • Diaz, G. R., J. Martinez–Monzo, P. Fito and A. Chiralt, 2002. Modelling of Dehydration–Rehydration of Orange Slices in Combined Microwave/Air Drying. Innovative Food Science and Emerging Technology 4:203–209.
  • Doymaz, I. and O. Ismail, 2011. Drying Characteristics of Sweet Cherry. Food and Bioproducts Processing 89:31–38.
  • Doymaz, İ., N. Tugrul and M. Pala, 2006. Drying Characteristics of Dill and Parsley Leaves. Journal of Food Engineering 77:559–565.
  • Drouzas, A. E., E. Tsami and G. D. Saravacos, 1999. Microwave/Vacuum Drying of Model Fruit Gels. Journal of Food Engineering 39:117–122.
  • Feng, H., 2002. Analysis of Microwave Assisted Fluidized–Bed Drying of Particulate Product with a Simplified Heat and Mass Transfer Model. International Communications in Heat and Mass Transfer 29:1021–1033.
  • Feng, H. and J. Tang, 1998. Microwave Finish Drying of Diced Apple Slices in a Spouted Bed. Journal of Food Science 63(4):679–683.
  • Henderson, S. M., 1974. Progress in Developing the Thin Layer Drying Equation. Transaction of ASAC 17:1167–1172.
  • Jena, S. and H. Das, 2007. Modelling for Vacuum Drying Characteristics of Coconut Presscake. Journal of Food Engineering 79:92–99.
  • Karaaslan, S. N. and İ. K. Tunçer, 2008. Development of a Drying Model for Combined Microwave–Fan Assisted Convection Drying of Spinach. Biosystems Engineering 100:44–52.
  • Karathanos, V. T., 1999. Correlation of Water Content of Dried Fruits by Drying Kinetics. Journal of Food Engineering 39:337–344.
  • Kassem, A. S., 1998. Comparative Studies on Thin Layer Drying Models for Wheat. In: 13th International Congress on Agricultural Engineering, 2–6 February 1998. Morocco. Vol 6.
  • Krüger, E., H. Dietrich, E. Schöpplein, S. Rasim and P. Kürbel, 2011. Cultivar, Storage Conditions and Ripening Effects on Physical and Chemical Qualities of Red Raspberry Fruit. Postharvest Biology and Technology 60:31–37.
  • Maskan, M., 2000. Microwave/Air and Microwave Finish Drying of Banana. Journal of Food Engineering 44:71–78.
  • Maskan, M., 2001. Drying, Shrinkage and Rehydration Characteristics of Kiwifruits during Hot Air and Microwave Drying. Journal of Food Engineering 48(2):177–182.
  • Melkadze, R. G., N. S. Chikovani and E. Kakhniashvili, 2008. Characteristics of the Composition of Caucasian Blackberry (Rubus caucasicus L.) Leaves as a Raw Material for Tea Production. Appl. Biochem. Microbiol. 44:647–651.
  • Midilli, A., H. Kucuk and Z. Yapar, 2002. A New Model for Single Layer Drying. Drying Technology 20(7):1503–1513.
  • Nile, S. H. and S. W. Park, 2014. Edible Berries: Bioactive Components and Their Effect on Human Health. Nutrition 30:134–144.
  • Ozkan, I. A., N. Akbudak and B. Akbudak, 2007. Microwave Drying Characteristics of Spinach. Journal of Food Engineering 78:577–583.
  • Pavlovic, A. V., A. Papetti, D. C. D. Zagorac, U. M. Gasic, D. M. Misic, Z. L. Tesic and M. M. Natic, 2016. Phenolics Composition of Leaf Extracts of Raspberry and Blackberry Cultivars Grown in Serbia. Industrial Crops and Products 87:304–314.
  • Ryan, T., J. M. Wilkinson and H. M. A. Cavanagh, 2001. Antibacterial Activity of Raspberry Cordial in vitro. Res. Vet. Sci. 71:155–159.
  • Soysal, Y., 2004. Microwave Drying Characteristics of Parsley. Biosystems Engineering 89:167–173.
  • Torki–Harchegani, M., D. Ghanbarian and A. G. Pirbalouti, 2016. Dehydration Behaviour, Mathematical Modelling, Energy Efficiency and Essential Oil Yield of Peppermint Leaves Undergoing Microwave and Hot Air Treatments. Renewable and Sustainable Energy Reviews 58:407–418.
  • Venskutonis, P. R., A. Dvaranauskaite and J. Labokas, 2007. Radical Scavenging Activity and Composition of Raspberry (Rubus idaeus) Leaves from Different Locations in Lithuania. Fitoterapia 78:162–165.
  • Verma, L. R., R. A. Bucklin, J. B. Endan and F. T. Wratten, 1985. Effects of Drying Air Parameters on Rice Drying Models. Transaction of ASEA 28:296–301.
  • Wang, S. Y. and H. S. Lin, 2000. Antioxidant Activity in Fruits and Leaves of Blackberry, Raspberry, and Strawberry Varies with Cultivar and Developmental Stage. J. Agric. Food Chem. 48:140–146.
  • Yağcıoğlu A., A. Değirmencioğlu and F. Cagatay, 1999. Drying Characteristics of Laurel Leaves under Different Drying Conditions. Proceedings of the 7th International Congress on Agricultural Mechanization and Energy, 26–27 May 1999. Adana–Turkey. 565–569

Microwave and Convective Drying of Blackberry and Determination of The Effect of Drying on Color and Ascorbic Acid Contents

Year 2017, Volume: 46 Issue: (Özel Sayı 1) 5. Uluslararası Üzümsü Meyveler Sempozyumu, 53 - 62, 31.12.2017

Abstract

The scope of this study, blackberry fruits (Rubus plicatus L.) which weighs 100±0.8 g with a moisture content of 83.9±0.36% on wet basis, were dried microwave with 850, 500 and 160 W output power and convective with 50℃ until fruits moisture fell down to 12.45±0.28% on wet basis. Whereas, drying periods for 850, 500 and 160 W microwave output powers were lasted 12.67, 27.17 and 90.25 minutes, respectively, convective drying with 50℃ were lasted 272.5 minutes. Drying processes were evaluated in terms of energy consumption. Drying data were modeled with six different thin layer drying models. Model whose coefficient of determination (R²) is the highest and standard error of estimated (SEE), root mean square error (RMSE) and chi–square (χ²) are the lowest was chosen to be the best models. In this study, color and ascorbic acid values of blackberry fruits dried with microwave and convective drying technique also determined. These values are shown in comparison with fresh product’s color and ascorbic acid parameters. Accordingly, the closest color parameters to fresh product were obtained at 850 W microwave output powers, while the closest ascorbic acid to fresh product were obtained at 500 W microwave output powers.

References

  • Alibas, I., 2012. Microwave Drying of Grapevine (Vitis vinifera L.) Leaves and Determination of Some Quality Parameters. Journal of Agricultural Sciences 18:43–53.
  • Alibaş, I. and N. Köksal, 2014. Convective, Vacuum and Microwave Drying Kinetics of Mallow Leaves and Comparison of Color and Ascorbic Acid Values of Three Drying Methods. Food Science and Technology 34(2):358–364.
  • Aral, S. and A. V. Beşe, 2016. Convective Drying of Hawthorn Fruit (Crataegus spp.): Effect of Experimental Parameters on Drying Kinetics, Color, Shrinkage, and Rehydration Capacity. Food Chemistry 210:577–584.
  • Brackmann, A., R. D. O. Anese, F. R. Thewes, D. Fronza and J. J. Hamann, 2016. Storability of ‘Tupy’ and ‘Guarani’ Blackberries in Controlled Atmosphere. Post-Harvest Technology 75(2):240–246.
  • Cia, P., I. U. Bron, S. R. T. Valentini, R. Pio and E. A. Chagas, 2007. Atmosfera Modificada e Refrigeraçao para Conservaçao Pos–Colheita da Amora–Preta. Bioscience Journal 23:11–16.
  • Cihan, A., K. Kahveci and O. Hacıhafızoğlu, 2007. Modelling of Intermittent Drying of Thin Layer Rough Rice. Journal of Food Engineering 79:2 93–298.
  • Dadali, G., E. Demirhan and B. Özbek, 2007. Color Change Kinetics of Spinach Undergoing Microwave Drying. Drying Technology 25:1713–1723.
  • Diaz, G. R., J. Martinez–Monzo, P. Fito and A. Chiralt, 2002. Modelling of Dehydration–Rehydration of Orange Slices in Combined Microwave/Air Drying. Innovative Food Science and Emerging Technology 4:203–209.
  • Doymaz, I. and O. Ismail, 2011. Drying Characteristics of Sweet Cherry. Food and Bioproducts Processing 89:31–38.
  • Doymaz, İ., N. Tugrul and M. Pala, 2006. Drying Characteristics of Dill and Parsley Leaves. Journal of Food Engineering 77:559–565.
  • Drouzas, A. E., E. Tsami and G. D. Saravacos, 1999. Microwave/Vacuum Drying of Model Fruit Gels. Journal of Food Engineering 39:117–122.
  • Feng, H., 2002. Analysis of Microwave Assisted Fluidized–Bed Drying of Particulate Product with a Simplified Heat and Mass Transfer Model. International Communications in Heat and Mass Transfer 29:1021–1033.
  • Feng, H. and J. Tang, 1998. Microwave Finish Drying of Diced Apple Slices in a Spouted Bed. Journal of Food Science 63(4):679–683.
  • Henderson, S. M., 1974. Progress in Developing the Thin Layer Drying Equation. Transaction of ASAC 17:1167–1172.
  • Jena, S. and H. Das, 2007. Modelling for Vacuum Drying Characteristics of Coconut Presscake. Journal of Food Engineering 79:92–99.
  • Karaaslan, S. N. and İ. K. Tunçer, 2008. Development of a Drying Model for Combined Microwave–Fan Assisted Convection Drying of Spinach. Biosystems Engineering 100:44–52.
  • Karathanos, V. T., 1999. Correlation of Water Content of Dried Fruits by Drying Kinetics. Journal of Food Engineering 39:337–344.
  • Kassem, A. S., 1998. Comparative Studies on Thin Layer Drying Models for Wheat. In: 13th International Congress on Agricultural Engineering, 2–6 February 1998. Morocco. Vol 6.
  • Krüger, E., H. Dietrich, E. Schöpplein, S. Rasim and P. Kürbel, 2011. Cultivar, Storage Conditions and Ripening Effects on Physical and Chemical Qualities of Red Raspberry Fruit. Postharvest Biology and Technology 60:31–37.
  • Maskan, M., 2000. Microwave/Air and Microwave Finish Drying of Banana. Journal of Food Engineering 44:71–78.
  • Maskan, M., 2001. Drying, Shrinkage and Rehydration Characteristics of Kiwifruits during Hot Air and Microwave Drying. Journal of Food Engineering 48(2):177–182.
  • Melkadze, R. G., N. S. Chikovani and E. Kakhniashvili, 2008. Characteristics of the Composition of Caucasian Blackberry (Rubus caucasicus L.) Leaves as a Raw Material for Tea Production. Appl. Biochem. Microbiol. 44:647–651.
  • Midilli, A., H. Kucuk and Z. Yapar, 2002. A New Model for Single Layer Drying. Drying Technology 20(7):1503–1513.
  • Nile, S. H. and S. W. Park, 2014. Edible Berries: Bioactive Components and Their Effect on Human Health. Nutrition 30:134–144.
  • Ozkan, I. A., N. Akbudak and B. Akbudak, 2007. Microwave Drying Characteristics of Spinach. Journal of Food Engineering 78:577–583.
  • Pavlovic, A. V., A. Papetti, D. C. D. Zagorac, U. M. Gasic, D. M. Misic, Z. L. Tesic and M. M. Natic, 2016. Phenolics Composition of Leaf Extracts of Raspberry and Blackberry Cultivars Grown in Serbia. Industrial Crops and Products 87:304–314.
  • Ryan, T., J. M. Wilkinson and H. M. A. Cavanagh, 2001. Antibacterial Activity of Raspberry Cordial in vitro. Res. Vet. Sci. 71:155–159.
  • Soysal, Y., 2004. Microwave Drying Characteristics of Parsley. Biosystems Engineering 89:167–173.
  • Torki–Harchegani, M., D. Ghanbarian and A. G. Pirbalouti, 2016. Dehydration Behaviour, Mathematical Modelling, Energy Efficiency and Essential Oil Yield of Peppermint Leaves Undergoing Microwave and Hot Air Treatments. Renewable and Sustainable Energy Reviews 58:407–418.
  • Venskutonis, P. R., A. Dvaranauskaite and J. Labokas, 2007. Radical Scavenging Activity and Composition of Raspberry (Rubus idaeus) Leaves from Different Locations in Lithuania. Fitoterapia 78:162–165.
  • Verma, L. R., R. A. Bucklin, J. B. Endan and F. T. Wratten, 1985. Effects of Drying Air Parameters on Rice Drying Models. Transaction of ASEA 28:296–301.
  • Wang, S. Y. and H. S. Lin, 2000. Antioxidant Activity in Fruits and Leaves of Blackberry, Raspberry, and Strawberry Varies with Cultivar and Developmental Stage. J. Agric. Food Chem. 48:140–146.
  • Yağcıoğlu A., A. Değirmencioğlu and F. Cagatay, 1999. Drying Characteristics of Laurel Leaves under Different Drying Conditions. Proceedings of the 7th International Congress on Agricultural Mechanization and Energy, 26–27 May 1999. Adana–Turkey. 565–569
There are 33 citations in total.

Details

Primary Language Turkish
Subjects Agricultural Engineering (Other)
Journal Section Makaleler
Authors

İlknur Alibaş

Nezihe Köksal

Publication Date December 31, 2017
Submission Date December 1, 2017
Acceptance Date December 31, 2017
Published in Issue Year 2017 Volume: 46 Issue: (Özel Sayı 1) 5. Uluslararası Üzümsü Meyveler Sempozyumu

Cite

APA Alibaş, İ., & Köksal, N. (2017). Böğürtlenin Mikrodalga ve Sıcak Hava ile Kurutulması ve Kurutmanın Renk ve Askorbik Asit İçeriği Üzerine Etkisinin Belirlenmesi. Bahçe, 46((Özel Sayı 1) 5. Uluslararası Üzümsü Meyveler Sempozyumu), 53-62.
AMA Alibaş İ, Köksal N. Böğürtlenin Mikrodalga ve Sıcak Hava ile Kurutulması ve Kurutmanın Renk ve Askorbik Asit İçeriği Üzerine Etkisinin Belirlenmesi. Bahçe. December 2017;46((Özel Sayı 1) 5. Uluslararası Üzümsü Meyveler Sempozyumu):53-62.
Chicago Alibaş, İlknur, and Nezihe Köksal. “Böğürtlenin Mikrodalga Ve Sıcak Hava Ile Kurutulması Ve Kurutmanın Renk Ve Askorbik Asit İçeriği Üzerine Etkisinin Belirlenmesi”. Bahçe 46, no. (Özel Sayı 1) 5. Uluslararası Üzümsü Meyveler Sempozyumu (December 2017): 53-62.
EndNote Alibaş İ, Köksal N (December 1, 2017) Böğürtlenin Mikrodalga ve Sıcak Hava ile Kurutulması ve Kurutmanın Renk ve Askorbik Asit İçeriği Üzerine Etkisinin Belirlenmesi. Bahçe 46 (Özel Sayı 1) 5. Uluslararası Üzümsü Meyveler Sempozyumu 53–62.
IEEE İ. Alibaş and N. Köksal, “Böğürtlenin Mikrodalga ve Sıcak Hava ile Kurutulması ve Kurutmanın Renk ve Askorbik Asit İçeriği Üzerine Etkisinin Belirlenmesi”, Bahçe, vol. 46, no. (Özel Sayı 1) 5. Uluslararası Üzümsü Meyveler Sempozyumu, pp. 53–62, 2017.
ISNAD Alibaş, İlknur - Köksal, Nezihe. “Böğürtlenin Mikrodalga Ve Sıcak Hava Ile Kurutulması Ve Kurutmanın Renk Ve Askorbik Asit İçeriği Üzerine Etkisinin Belirlenmesi”. Bahçe 46/(Özel Sayı 1) 5. Uluslararası Üzümsü Meyveler Sempozyumu (December2017), 53-62.
JAMA Alibaş İ, Köksal N. Böğürtlenin Mikrodalga ve Sıcak Hava ile Kurutulması ve Kurutmanın Renk ve Askorbik Asit İçeriği Üzerine Etkisinin Belirlenmesi. Bahçe. 2017;46:53–62.
MLA Alibaş, İlknur and Nezihe Köksal. “Böğürtlenin Mikrodalga Ve Sıcak Hava Ile Kurutulması Ve Kurutmanın Renk Ve Askorbik Asit İçeriği Üzerine Etkisinin Belirlenmesi”. Bahçe, vol. 46, no. (Özel Sayı 1) 5. Uluslararası Üzümsü Meyveler Sempozyumu, 2017, pp. 53-62.
Vancouver Alibaş İ, Köksal N. Böğürtlenin Mikrodalga ve Sıcak Hava ile Kurutulması ve Kurutmanın Renk ve Askorbik Asit İçeriği Üzerine Etkisinin Belirlenmesi. Bahçe. 2017;46((Özel Sayı 1) 5. Uluslararası Üzümsü Meyveler Sempozyumu):53-62.

BAHCE Journal
bahcejournal@gmail.com
https://bahcejournal.org
Atatürk Horticultural Central Research Institute, Yalova 77100 TÜRKİYE
X (Twitter)LinkedinFacebookInstagram