Conference Paper
BibTex RIS Cite

Domateste "Marker Destekli Islah (MAS)"

Year 2022, Volume: 51 Issue: (Özel Sayı 1) 13. Sebze Tarımı Sempozyumu, 73 - 78, 19.12.2022

Abstract

Bitki biyoteknolojisi günümüz tarımsal faaliyetlerinde, özellikle bitki ıslahı alanında oldukça önem kazanmıştır. Özellikle Dünya tarımı için önemli bir materyal olan domateste gerek verim gerekse kalite açısından yoğun bir şekilde ıslah programı uygulanmaktadır. Domateste verim ve kalite kayıplarına neden olan etkenlerin başında viral, bakteriyel, ve fungal kökenli hastalıklar ve nematod gibi zararlılar gelmektedir. Bu kayıpların üstesinden gelebilmek için domates ıslahında genetik dayanıklı hibritlerin (F₁) geliştirilmesi önem arz etmektedir. Klasik ıslah sürecini hızlandırmak ve iş gücünü azaltmak adına moleküler markırların kullanılması yenilikçi bir yaklaşım olarak öne çıkmaktadır. Bu çalışmada, domateste sık görülen bakteriyel (Bakteriyel Benek), viral (Domates Lekeli Solgunluk Virüsü (TSWV), Domates Sarı Yaprak Kıvırcıklığı Virüsü (TYLCV), Domates Mozaik Virüsü (ToMV)), fungal (Fusarium Solgunluğu, Vertisilyum Solgunluğu, Gri Yaprak Lekesi, Geç Yanıklık) ve nematod (Kök-ur Nematodu) kaynaklı hastalıklara karşı dayanıklılık genlerine bağlı moleküler markırların ıslah programına entegre ederek “markır destekli seleksiyon (MAS)” gerçekleştirilmesi amaçlanmıştır. Bu kapsamda farklı meyve türüne sahip (tekli (%42), salkım (%20), kokteyl (%18), cherry (%7), köy tipi (%8), beef (%3), plum (%2)) toplamda 2316 domates genotipi bu hastalıklara karşı dayanım durumlarının tespiti amacıyla klasik PCR ve floresan işaretli sekans-spesifik prob temelli RT-PCR (gerçek zamanlı PCR) yöntemleri ile test edilmiştir. Bu sayede domates yetiştiriciliğinde genetik dayanımın kullanılması ile daha hızlı, güvenilir ve çevre dostu bir üretim modeli anlayışına katkıda bulunulmuştur. Bu çalışma sayesinde daha hızlı, daha güvenilir ve hastalık dayanımına sahip potansiyel hibrit adaylarının geliştirilmesine katkıda bulunulmuştur.

References

  • FAO, 2020. FAO crops and livestock products (https://www.fao.org/faostat/en/#data/qcl; Erişim:Eylül 2022).
  • Kabaş, A., İlbi, H. 2016. Hibrit domates tohum üretimi ve teknolojisi. Türktob Dergisi 17:16-17.
  • Martínez‐Valverde, I., Periago, M. J., Provan, G., Chesson, A. 2002. Phenolic compounds, lycopene and antioxidant activity in commercial varieties of tomato (Lycopersicum esculentum). Journal of the Science of Food and Agriculture 82(3):323-330.
  • Al-Remi, F., Arvas, Y.E., Durmuş, M., Kaya, Y. 2018. Domates bitkisi ve in vitro mikro çoğaltımı. J. Engineering Tech. and Appl. Sci. 3(1):57-73.
  • Heusden, S. van, Lindhout, P. 2018. Tomatoes. In:E. Heuvelink (Ed.):Genetics and breeding, CABI International, Boston, USA. 35p.
  • Yialouris, C.P., Sideridis, A.B. 1996. An expert system for tomato diseases. Computers and Electronics in Agriculture 14(1):61-76.
  • Dianese, E.C., de Fonseca, M.E.N., Goldbach, R., Kormelink, R., Inoue-Nagata, A.K., Resende, R.O., Boiteux, L.S. 2010. Development of a locus-specific, co-dominant SCAR marker for assisted-selection of the Sw-5 (Tospovirus resistance) gene cluster in a wide range of tomato accessions. Molecular Breeding 25(1):133-142.
  • Ji, Y., D.J. Schuster, J.W. Scott, 2007. Ty-3, a begomovirus resistance locus near the Tomato yellow leaf curl virus resistance locus Ty-1 on chromosome 6 of tomato. Molecular Breeding 20(3):271-284.
  • Hutton, S.F., Scott, J.W., Schuster, D.J. 2012. Recessive Resistance to Tomato yellow leaf curl virus from the Tomato Cultivar Tyking Is Located in the Same Region as Ty-5 on Chromosome 4, HortScience 47(3):324-327.
  • Caro, M., M.G. Verlaan, O. Julián, R. Finkers, A.M.A. Wolters, S.F. Hutton, J.W. Scott, R. Kormelink, R.G.F. Visser, M.J. Diez, A. Perez de Castro, Y. Bai, 2015. Assessing the genetic variation of Ty-1 and Ty-3 alleles conferring resistance to tomato yellow leaf curl virus in a broad tomato germplasm. Molecular Breeding 35(6):1-13.
  • Hall, T.J. 1980. Resistance at the TM-2 locus in the tomato to tomato mosaic virus. Euphytica 29:189-197.
  • Fazio, G., M.R. Stevens, J.W. Scott, 1999. Identification of RAPD markers linked to Fusarium crown and root rot resistance (Frl) in tomato. Euphytica 105(3):205-210.
  • Zhang, J., Panthee, D.R. 2021. Development of codominant SCAR markers to detect the Pto, Tm22, I3 and Sw5 genes in tomato (Solanum lycopersicum). Plant Breeding 140(2):342-348.
  • Panthee, D.R., Chen, F. 2010. Genomics of fungal disease resistance in tomato. Current Genomics 11(1):30-39.
  • Su, X., Zhu, G., Huang, Z., Wang, X., Guo, Y., Li, B., Du, Y., Yang, W., Gao, J. 2019. Fine mapping and molecular marker development of the Sm gene conferring resistance to gray leaf spot (Stemphylium spp.) in tomato. Theoretical and Applied Genetics, 132(4):871-882.
  • Chunwongse, J., Chunwongse, C., Black, L., Hanson, P. 2002. Molecular mapping of the Ph-3 gene for late blight resistance in tomato. The Journal of Horticultural Science and Biotechnology 77(3):281-286.
  • Pedley, K.F., Martin, G.B. 2003. Molecular basis of Pto-mediated resistance to bacterial speck disease in tomato. Annual Review of Phytopathology 41(1):215-243.
  • Seah, S., Williamson, V.M., Garcia, B.E., Mejia, L., Salus, M.S., Martin, C.T., Maxwell, D.P. 2007. Evaluation of a co-dominant SCAR marker for detection of the Mi-1 locus for resistance to root-knot nematode in tomato germplasm. Tomato Genetic Cooperative Report, 57:37-40.
  • Doyle, J.J. 1990. Isolation of plant DNA from fresh tissue. Focus 12:13-15.
  • Arens, P., C. Mansilla, D. Deinum, L. Cavellini, A. Moretti, S. Rolland, van der H. Schoot, D. Calvache, F. Ponz, C. Collonnier, R. Mathis, D. Smilde, C. Caranda, B. Vosman, 2010. Development and evaluation of robust molecular markers linked to disease resistance in tomato for distinctness, uniformity and stability testing. Theoretical & Applied Genetics 120(3):655-664.
  • Foolad, M.R., Panthee, D.R. 2012. Marker-Assisted Selection in Tomato Breeding, Critical Reviews in Plant Sciences 31(2):93-123.
  • Verlaan, M.G., S.F. Hutton, R.M. Ibrahem, R. Kormelink, R.G.F. Visser, J.W. Scott, J.D. Edwards, Y. Bai 2013. The tomato yellow leaf curl virus resistance genes Ty-1 and Ty-3 are allelic and code for DFDGD-class RNA-dependent RNA polymerases. PLoS genetics, 9(3):e1003399.
  • Ji, Y., Schuster, D.J., Scott, J.W. 2007. Ty-3, a begomovirus resistance locus near the Tomato yellow leaf curl virus resistance locus Ty-1 on chromosome 6 of tomato. Molecular Breeding 20:271-284.
  • Gurvich, O.L., Skoblov, M. 2011. Real-time PCR and multiplex approaches. In:O’Driscoll, L. (eds) Gene Expression Profiling. Methods in Molecular Biology, Vol:784. Humana Press.

"Marker Assisted Selection (Mas)" In Tomato Breeding

Year 2022, Volume: 51 Issue: (Özel Sayı 1) 13. Sebze Tarımı Sempozyumu, 73 - 78, 19.12.2022

Abstract

Plant biotechnology has gained importance in today’s agricultural activities, especially in the field of plant breeding. In tomato breeding, an intensive breeding program is applied in terms of both yield and quality. Viral, bacterial, fungal pathogens, and nematodes are the leading causes of yield and quality losses in tomato cultivation. In order to overcome these losses, it is crucial to develop hybrids (F₁) that are genetically resistant to this group of diseases. The use of molecular markers stands out as an innovative approach in order to accelerate the classical breeding process and to make multi-disease resistant line development possible. In this study, “marker assisted selection (MAS)” was used to integrate molecular markers related to resistance genes against bacterial (Tomato Bacterial Speck), viral (Tomato Spotted Wilt Virus (TSWV), Tomato Yellow Leaf Curl Virus (TYLCV), Tomato Mosaic Virus (ToMV)), fungal (Fusarium Wilt, Fusarium Crown and Root Rot, Verticillium Wilt, Gray Leaf Spot, Late Blight) and nematode (Root Knot Nematode) diseases in tomato a commercial breeding program. In this context, a total of 2316 tomato genotypes (loose (42%), trust (20%), cocktail (18%), cherry (7%), marmande (8%), beef (3%), plum (2%)) were tested with classical PCR and fluorescently labeled sequence-specific probe-based RT-PCR (real-time PCR) methods to determine their resistance against these diseases. In this way, the use of genetic resistance in tomato cultivation has contributed to the understanding of a faster, reliable and environmentally friendly production model. This study contributed to the development of potential hybrid candidates with faster, more reliable and disease resistance.

References

  • FAO, 2020. FAO crops and livestock products (https://www.fao.org/faostat/en/#data/qcl; Erişim:Eylül 2022).
  • Kabaş, A., İlbi, H. 2016. Hibrit domates tohum üretimi ve teknolojisi. Türktob Dergisi 17:16-17.
  • Martínez‐Valverde, I., Periago, M. J., Provan, G., Chesson, A. 2002. Phenolic compounds, lycopene and antioxidant activity in commercial varieties of tomato (Lycopersicum esculentum). Journal of the Science of Food and Agriculture 82(3):323-330.
  • Al-Remi, F., Arvas, Y.E., Durmuş, M., Kaya, Y. 2018. Domates bitkisi ve in vitro mikro çoğaltımı. J. Engineering Tech. and Appl. Sci. 3(1):57-73.
  • Heusden, S. van, Lindhout, P. 2018. Tomatoes. In:E. Heuvelink (Ed.):Genetics and breeding, CABI International, Boston, USA. 35p.
  • Yialouris, C.P., Sideridis, A.B. 1996. An expert system for tomato diseases. Computers and Electronics in Agriculture 14(1):61-76.
  • Dianese, E.C., de Fonseca, M.E.N., Goldbach, R., Kormelink, R., Inoue-Nagata, A.K., Resende, R.O., Boiteux, L.S. 2010. Development of a locus-specific, co-dominant SCAR marker for assisted-selection of the Sw-5 (Tospovirus resistance) gene cluster in a wide range of tomato accessions. Molecular Breeding 25(1):133-142.
  • Ji, Y., D.J. Schuster, J.W. Scott, 2007. Ty-3, a begomovirus resistance locus near the Tomato yellow leaf curl virus resistance locus Ty-1 on chromosome 6 of tomato. Molecular Breeding 20(3):271-284.
  • Hutton, S.F., Scott, J.W., Schuster, D.J. 2012. Recessive Resistance to Tomato yellow leaf curl virus from the Tomato Cultivar Tyking Is Located in the Same Region as Ty-5 on Chromosome 4, HortScience 47(3):324-327.
  • Caro, M., M.G. Verlaan, O. Julián, R. Finkers, A.M.A. Wolters, S.F. Hutton, J.W. Scott, R. Kormelink, R.G.F. Visser, M.J. Diez, A. Perez de Castro, Y. Bai, 2015. Assessing the genetic variation of Ty-1 and Ty-3 alleles conferring resistance to tomato yellow leaf curl virus in a broad tomato germplasm. Molecular Breeding 35(6):1-13.
  • Hall, T.J. 1980. Resistance at the TM-2 locus in the tomato to tomato mosaic virus. Euphytica 29:189-197.
  • Fazio, G., M.R. Stevens, J.W. Scott, 1999. Identification of RAPD markers linked to Fusarium crown and root rot resistance (Frl) in tomato. Euphytica 105(3):205-210.
  • Zhang, J., Panthee, D.R. 2021. Development of codominant SCAR markers to detect the Pto, Tm22, I3 and Sw5 genes in tomato (Solanum lycopersicum). Plant Breeding 140(2):342-348.
  • Panthee, D.R., Chen, F. 2010. Genomics of fungal disease resistance in tomato. Current Genomics 11(1):30-39.
  • Su, X., Zhu, G., Huang, Z., Wang, X., Guo, Y., Li, B., Du, Y., Yang, W., Gao, J. 2019. Fine mapping and molecular marker development of the Sm gene conferring resistance to gray leaf spot (Stemphylium spp.) in tomato. Theoretical and Applied Genetics, 132(4):871-882.
  • Chunwongse, J., Chunwongse, C., Black, L., Hanson, P. 2002. Molecular mapping of the Ph-3 gene for late blight resistance in tomato. The Journal of Horticultural Science and Biotechnology 77(3):281-286.
  • Pedley, K.F., Martin, G.B. 2003. Molecular basis of Pto-mediated resistance to bacterial speck disease in tomato. Annual Review of Phytopathology 41(1):215-243.
  • Seah, S., Williamson, V.M., Garcia, B.E., Mejia, L., Salus, M.S., Martin, C.T., Maxwell, D.P. 2007. Evaluation of a co-dominant SCAR marker for detection of the Mi-1 locus for resistance to root-knot nematode in tomato germplasm. Tomato Genetic Cooperative Report, 57:37-40.
  • Doyle, J.J. 1990. Isolation of plant DNA from fresh tissue. Focus 12:13-15.
  • Arens, P., C. Mansilla, D. Deinum, L. Cavellini, A. Moretti, S. Rolland, van der H. Schoot, D. Calvache, F. Ponz, C. Collonnier, R. Mathis, D. Smilde, C. Caranda, B. Vosman, 2010. Development and evaluation of robust molecular markers linked to disease resistance in tomato for distinctness, uniformity and stability testing. Theoretical & Applied Genetics 120(3):655-664.
  • Foolad, M.R., Panthee, D.R. 2012. Marker-Assisted Selection in Tomato Breeding, Critical Reviews in Plant Sciences 31(2):93-123.
  • Verlaan, M.G., S.F. Hutton, R.M. Ibrahem, R. Kormelink, R.G.F. Visser, J.W. Scott, J.D. Edwards, Y. Bai 2013. The tomato yellow leaf curl virus resistance genes Ty-1 and Ty-3 are allelic and code for DFDGD-class RNA-dependent RNA polymerases. PLoS genetics, 9(3):e1003399.
  • Ji, Y., Schuster, D.J., Scott, J.W. 2007. Ty-3, a begomovirus resistance locus near the Tomato yellow leaf curl virus resistance locus Ty-1 on chromosome 6 of tomato. Molecular Breeding 20:271-284.
  • Gurvich, O.L., Skoblov, M. 2011. Real-time PCR and multiplex approaches. In:O’Driscoll, L. (eds) Gene Expression Profiling. Methods in Molecular Biology, Vol:784. Humana Press.
There are 24 citations in total.

Details

Primary Language Turkish
Subjects Agricultural Engineering (Other)
Journal Section Makaleler
Authors

Cansu Şimşek

Duran Şimşek

Nedim Mutlu

Gamze Çiçek This is me

Dilşan Boylu

Publication Date December 19, 2022
Submission Date January 1, 2022
Acceptance Date January 31, 2022
Published in Issue Year 2022 Volume: 51 Issue: (Özel Sayı 1) 13. Sebze Tarımı Sempozyumu

Cite

APA Şimşek, C., Şimşek, D., Mutlu, N., … Çiçek, G. (2022). Domateste "Marker Destekli Islah (MAS)". Bahçe, 51((Özel Sayı 1) 13. Sebze Tarımı Sempozyumu), 73-78.
AMA Şimşek C, Şimşek D, Mutlu N, Çiçek G, Boylu D. Domateste "Marker Destekli Islah (MAS)". Bahçe. December 2022;51((Özel Sayı 1) 13. Sebze Tarımı Sempozyumu):73-78.
Chicago Şimşek, Cansu, Duran Şimşek, Nedim Mutlu, Gamze Çiçek, and Dilşan Boylu. “Domateste ‘Marker Destekli Islah (MAS)’”. Bahçe 51, no. (Özel Sayı 1) 13. Sebze Tarımı Sempozyumu (December 2022): 73-78.
EndNote Şimşek C, Şimşek D, Mutlu N, Çiçek G, Boylu D (December 1, 2022) Domateste "Marker Destekli Islah (MAS)". Bahçe 51 (Özel Sayı 1) 13. Sebze Tarımı Sempozyumu 73–78.
IEEE C. Şimşek, D. Şimşek, N. Mutlu, G. Çiçek, and D. Boylu, “Domateste ‘Marker Destekli Islah (MAS)’”, Bahçe, vol. 51, no. (Özel Sayı 1) 13. Sebze Tarımı Sempozyumu, pp. 73–78, 2022.
ISNAD Şimşek, Cansu et al. “Domateste ‘Marker Destekli Islah (MAS)’”. Bahçe 51/(Özel Sayı 1) 13. Sebze Tarımı Sempozyumu (December2022), 73-78.
JAMA Şimşek C, Şimşek D, Mutlu N, Çiçek G, Boylu D. Domateste "Marker Destekli Islah (MAS)". Bahçe. 2022;51:73–78.
MLA Şimşek, Cansu et al. “Domateste ‘Marker Destekli Islah (MAS)’”. Bahçe, vol. 51, no. (Özel Sayı 1) 13. Sebze Tarımı Sempozyumu, 2022, pp. 73-78.
Vancouver Şimşek C, Şimşek D, Mutlu N, Çiçek G, Boylu D. Domateste "Marker Destekli Islah (MAS)". Bahçe. 2022;51((Özel Sayı 1) 13. Sebze Tarımı Sempozyumu):73-8.

BAHCE Journal
bahcejournal@gmail.com
https://bahcejournal.org
Atatürk Horticultural Central Research Institute, Yalova 77100 TÜRKİYE
X (Twitter)LinkedinFacebookInstagram