Akdeniz Havzasından Toplanan Yerel Domates Genotiplerinin Ssr Markörlerine Dayalı Moleküler Karakterizasyonu
Year 2022,
Volume: 51 Issue: (Özel Sayı 1) 13. Sebze Tarımı Sempozyumu, 79 - 84, 19.12.2022
Tunç Durdu
,
Yüksel Tüzel
,
Tansel Kaygısız Aşçıoğul
Abstract
İnsan kaynaklı negatif etkilerden dolayı tarımsal faaliyetler ve bununla ilişkili olarak gıda güvenliği tehdit altındadır. Özellikle Akdeniz Havzası gibi orta enlemlerde bulunan karasal alanların iklim değişikliğinden en fazla etkilenen bölgeler olacakları öngörülmektedir. Bu etki, domates de dahil olmak üzere kültürü yapılan birçok türde üretim ve tüketimin devamlılığını kaçınılmaz olarak baskılayacaktır. Bu nedenle mevcut üretim ve tüketim alışkanlıklarının devam ettirilebilmesi için kapsamlı tanımlama, koruma ve geliştirme çalışmalarının yapılmasına ihtiyaç vardır. İstenilen bu çalışmaların yapılabilmesi için mevcut genotipik zenginliklerin ortaya çıkarılması ve sahip oldukları avantajların tespit edilmesi büyük önem taşımaktadır. Bu çalışma, “İklim Değişikliği Kaynaklı Çoklu Stres Koşullarına Akdeniz Sebze Türlerinin Adaptasyonu” adlı AB-PRIMA Projesi kapsamında gerçekleştirilmiş olup, iklim değişikliği kaynaklı stres koşullarına dayanıklı olabilecekleri düşünülerek Akdeniz’in farklı bölgelerinden elde edilen ve seçilen yerel domates genotiplerinin SSR markörleri kullanılarak moleküler karakterizasyonlarının yapılmasını ve akrabalıklarının ortaya konmasını kapsamaktadır. Çalışmada 21 genotipte 11 adet primerden toplam 34 polimorfik bant elde edilmiş olup bunların Temel Bileşen Analizine dayalı olarak yapılan faktör analiz sonucuna göre öz değeri 1’in üzerinde olan 5 faktör grubu oluşmuş ve toplam varyasyonun %83’ünü (r=0.81) temsil etmiştir.
References
-
Benor, S., Zhang, M., Wang, Z., Zhang, H., 2008. Assessment of genetic variation in tomato (Solanum lycopersicum L.) inbred lines using SSR molecular markers. Journal of genetics and genomics, 6:373-9.
-
Bergougnoux, V., 2013. The history of tomato:from domestication to biopharming. Biotechnol Adv., Jan-Feb, 32(1):170-89 (doi:10.1016/j.bio techadv.2013.11.003), Epub 2013 Nov 7, PMID:24211472.
-
Blanca, J., Cañizares, J., Cordero, L., Pascual, L., Diez, M.J., Nuez, F., 2012. Variation revealed by SNP genotyping and morphology provides insight into the origin of the tomato. PLoS One 7, e48198.
-
Blanca, J., Montero-Pau, J., Sauvage, C., Bauchet, G., Illa, E., Díez, M.J., Francis, D., Causse, M., Van der Knaap, E., Cañizares, J., 2015. Genomic variation in tomato, from wild ancestors to contemporary breeding accessions. BMC Genomics 16:257.
-
Blanca, J., Pons, C., Montero-Pau, J., Sanchez-Matarredona, D., Ziarsolo, P., Fontanet, L., Fisher, J., Plazas, M., Casals, J., Rambla, J.L., Riccini, A., Palombieri, S., Ruggiero, A., Sulli, M., Grillo, S., Kanellis, A., Giuliano, G., Finkers, R., Cammareri, M., Grandillo, S., Mazzucato, A., Causse, M., Díez, M.J., Prohens, J., Zamir, D., Cañizares, J., Monforte, A.J., Granell, A., 2022. European traditional tomatoes galore:a result of farmers’ selection of a few diversity-rich loci. Journal of Experimental Botany 73(11):3431-3445 (https://doi.org/10.1093/jxb/erac072).
-
Bota, J., Conesa, M.À., Ochogavia, J.M., 2014. Characterization of a landrace collection for Tomàtiga de Ramellet (Solanum lycopersicum L.) from the Balearic Islands. Genet Resour Crop Evol. 61:1131-1146 (https://doi.org/10.1007/s107 22-014-0096-3).
-
Castellana, S., Ranzino, L., Beritognolo, I., Cherubini, M., Luneia, R., Villani, F., Mattioni, C., 2020. Genetic characterization and molecular fingerprint of traditional Umbrian tomato (Solanum lycopersicum L.) landraces through SSR markers and application for varietal identification. Genetic Resources and Crop Evolution, pp:1-14.
-
Cooke, R.J., 1995. Varietal identification of crop plants. In:J.H. Skerritt, R. Appels (Eds.):New Diagnostics in Crop Sciences. CAB Int., Wallingford, pp:3363.
-
Dice, L.R., 1945. Measures of the amount of ecologic association between species. Ecology, 26:297-302.
-
FAOSTAT, 2020. Ülkeler bazında dünya domates üretim rakamları. (http://www.fao.org/faostat/en/ #data/qc; Erişim:03.01.2022).
-
Finkers, R., de Weerd, H., 2011. BreeDB:A database supporting quantitative aspects of plant breeding. Plant and Animal Genomes XIX, San Diego.
-
Frary, A., Xu, Y., Liu, J., Mitchell, S., Tedeschi, E., Tanksley, S., 2005. Development of a set of PCR-based anchor markers encompassing the tomato genome and evaluation of their usefulness for genetics and breeding experiments. Theor Appl. Genet. 111(2):291-312. (doi:10.1007/s001 22-005-2023-7) Epub 2005 May 31, PMID:15926074.
-
Geethanjali, S., Kadirvel, P., Peña, R.D., Rao, E.S., Wang, J., 2010. Development of tomato SSR markers from anchored BAC clones of chromosome 12 and their application for genetic diversity analysis and linkage mapping. Euphytica, 178:283-295.
-
Giorgi, F., Lionello, P., 2007. Climate change projections for the Mediterranean region. Global and Planetary Change. 63:90-104 (10.1016/j. gloplacha.2007.09.005).
-
IPCC, 2007. Climate Change 2007:Synthesis Report. In:R.K. Pachauri, A. Reisinger (Eds.):Contribution of Working Goups I, II and III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. IPCC, Geneva, Switzerland, 104p.
-
Korir, N.K., Diao, W., Tao, R., Li, X., Kayesh, E., Li, A., Zhen, W., Wang, S., 2014. Genetic diversity and relationships among different tomato varieties revealed by EST-SSR markers. Genetics and molecular research:GMR, 13(1):43-53.
-
Kwon, Y., Park, S., Yi, S., 2010. Assessment of genetic variation among commercial tomato (Solanum lycopersicum L.) varieties using SSR markers and morphological characteristics Genes & Genomics, 31:1-10.
-
Lee, L.S., Henry, R.J., 2001. Commercial applications of plant genotyping. In R.J. Henry (Ed):Plant Genotyping:The DNA Fingerprinting Plants. CABI Publ., Oxen, pp:265-273.
-
Mazzucato, A., Papa, R., Bitocchi, E., Mosconi, P., Nanni, L., Negri, V., Picarella, M.E., Siligato, F., Soressi, G.P., Tiranti, B., Veronesi, F., 2007. Genetic diversity, structure and marker-trait associations in a collection of Italian tomato (Solanum lycopersicum L.) landraces. Theoretical and Applied Genetics, 116:657-669.
-
Muños, S., Ranc, N., Botton, E., 2011. Increase in tomato locule number is controlled by two single-nucleotide polymorphisms located near Wuschel. Plant Physiology, 156:2244-2254.
-
Naik, P., Singh, M., Ranjan, J., 2017. Impact of Climate Change on Vegetable Production and Adaptation Measures (10.1007/978-981-10-5744-1-19).
-
Parmar, P., Oza, V.P., Chauhan, V., Patel, A.D., Kathiria, K.B., Subramanian, R.B., 2010. Genetic diversity and DNA fingerprint study of tomato discerned by SSR markers. International Journal of Biotechnology and Biochemistry, 6(5):657+.
-
Pons, C., Casals, J., Palombieri, S., Fontanet, L., Riccini, A., Rambla, J.L., Ruggiero, A., Figás, M.R., Plazas, M., Koukounaras, A., Picarella, M.E., Sulli, M., Fisher, J., Ziarsolo, P., Blanca, J., Cañizares, J., Cammareri, M., Vitiello, A., Batelli, G., Kanellis, A., Brouwer, M., Finkers, R., Nikoloudis, K., Soler, S., Giuliano, G., Grillo, S., Grandillo, S., Zamir, D., Mazzucato, A., Causse, C., Díez, M.J., Prohens, J., Monforte, A.J., Granell, A., 2022. Atlas of phenotypic, genotypic and geographical diversity present in the European traditional tomato. Horticulture Research, 9(112), (https://doi.org/10.1093/hr/uhac112).
-
Powell, W., Machray, G.C., Provan, J., 1996. Polymorphism revealed by simple sequence repeats. Trend in Plant Science, 96:1360-1385.
-
Rohlf, J.F., 2000. NTSYSpc Numerical Taxonomy and Multivariate Analysis System Version 2.1. User Guide, Department of Ecology and Evolution State University of New York.
-
Ruiz, J.J, Garcia-Martinez, S., Pico, B., Quiros, C.F., Gao M., 2005. Genetic Variability and Relationship of closely related Spanish traditional cultivars of tomato as detected by SRAP and SSR. J. Amer. Soc. Hort. Sci. 130(1):88-94.
-
Sim, S.C., Van Deynze, A., Stoffel, K., 2012. High-density SNP genotyping of tomato (Solanum lycopersicum L.) reveals patterns of genetic variation due to breeding. PLoS One 7, e45520.
-
Suliman-Pollatschek, S., Kashkush, K., Shats, H., Hillel, J., Lavi, U., 2002. Generation and mapping of AFLP, SSRs, and SNPs in Lycopersicon esculentum, Cell Mol Biol Letts, 7:583-597.
-
UPOV-BMT, 2002. BMT/36f1O Progress report of the 36. session of the technical committee, the technical working parties and working group on biochemical and molecular techniques and DNA-profiling in particular, Geneva.
-
Vijayakumar, A., Shaji, S., Beena, R., Sarada, S., Sajitha Rani, T., Stephen, R., Manju, R.V., Viji, M., 2021. High temperature induced changes in quality and yield parameters of tomato (Solanum lycopersicum L.) and similarity coefficients among genotypes using SSR markers. Heliyon, 7.
-
Yang, W., Bai, X., Kabelka, E., Eaton, C., Kamoun, S., Van der Kannp, E., Francis, D., 2004. Discovery of single nucleotide polymorphisms in Lycopersicon esculentum by computer aided analysis of expressed sequence tags. Mol Breeding 14:21-34.
Molecular Characterization Based on SSR Markers of Local Tomato Genotypes Collected From The Mediterranean Basin
Year 2022,
Volume: 51 Issue: (Özel Sayı 1) 13. Sebze Tarımı Sempozyumu, 79 - 84, 19.12.2022
Tunç Durdu
,
Yüksel Tüzel
,
Tansel Kaygısız Aşçıoğul
Abstract
Agricultural activities and food safety have been under threat due to human-induced negative effects. It is predicted that terrestrial areas located in mid-latitudes, such as the Mediterranean Basin, will be the regions most affected by climate change. This effect inevitably suppresses the continuity of production and consumption in many cultivated species, including tomato. Therefore, it is necessary to carry out comprehensive identification, protection and development studies in order to maintain the current production and consumption habits. In order to carry out these desired studies, it is of great importance to reveal the existing genotypic richness and to determine the advantages they have. This study was carried out within the scope of the EU-PRIMA Project titled “Adapting Mediterranean Vegetable Crops to Climate Change-Induced Multiple Stress” and it is aimed to carry out molecular characterization by using SSR markers of local tomato genotypes and revealing their kinship obtained from different regions of the Mediterranean considering that they can be resistant to stress conditions caused by climate change. In the study, a total of 34 polymorphic bands were obtained from 11 primers in 21 genotypes, and according to the factor analysis result based on Principal Component Analysis, 5 factor groups with an Eigen value above 1 were formed and represented 83%(r=0.81) of the total variation.
References
-
Benor, S., Zhang, M., Wang, Z., Zhang, H., 2008. Assessment of genetic variation in tomato (Solanum lycopersicum L.) inbred lines using SSR molecular markers. Journal of genetics and genomics, 6:373-9.
-
Bergougnoux, V., 2013. The history of tomato:from domestication to biopharming. Biotechnol Adv., Jan-Feb, 32(1):170-89 (doi:10.1016/j.bio techadv.2013.11.003), Epub 2013 Nov 7, PMID:24211472.
-
Blanca, J., Cañizares, J., Cordero, L., Pascual, L., Diez, M.J., Nuez, F., 2012. Variation revealed by SNP genotyping and morphology provides insight into the origin of the tomato. PLoS One 7, e48198.
-
Blanca, J., Montero-Pau, J., Sauvage, C., Bauchet, G., Illa, E., Díez, M.J., Francis, D., Causse, M., Van der Knaap, E., Cañizares, J., 2015. Genomic variation in tomato, from wild ancestors to contemporary breeding accessions. BMC Genomics 16:257.
-
Blanca, J., Pons, C., Montero-Pau, J., Sanchez-Matarredona, D., Ziarsolo, P., Fontanet, L., Fisher, J., Plazas, M., Casals, J., Rambla, J.L., Riccini, A., Palombieri, S., Ruggiero, A., Sulli, M., Grillo, S., Kanellis, A., Giuliano, G., Finkers, R., Cammareri, M., Grandillo, S., Mazzucato, A., Causse, M., Díez, M.J., Prohens, J., Zamir, D., Cañizares, J., Monforte, A.J., Granell, A., 2022. European traditional tomatoes galore:a result of farmers’ selection of a few diversity-rich loci. Journal of Experimental Botany 73(11):3431-3445 (https://doi.org/10.1093/jxb/erac072).
-
Bota, J., Conesa, M.À., Ochogavia, J.M., 2014. Characterization of a landrace collection for Tomàtiga de Ramellet (Solanum lycopersicum L.) from the Balearic Islands. Genet Resour Crop Evol. 61:1131-1146 (https://doi.org/10.1007/s107 22-014-0096-3).
-
Castellana, S., Ranzino, L., Beritognolo, I., Cherubini, M., Luneia, R., Villani, F., Mattioni, C., 2020. Genetic characterization and molecular fingerprint of traditional Umbrian tomato (Solanum lycopersicum L.) landraces through SSR markers and application for varietal identification. Genetic Resources and Crop Evolution, pp:1-14.
-
Cooke, R.J., 1995. Varietal identification of crop plants. In:J.H. Skerritt, R. Appels (Eds.):New Diagnostics in Crop Sciences. CAB Int., Wallingford, pp:3363.
-
Dice, L.R., 1945. Measures of the amount of ecologic association between species. Ecology, 26:297-302.
-
FAOSTAT, 2020. Ülkeler bazında dünya domates üretim rakamları. (http://www.fao.org/faostat/en/ #data/qc; Erişim:03.01.2022).
-
Finkers, R., de Weerd, H., 2011. BreeDB:A database supporting quantitative aspects of plant breeding. Plant and Animal Genomes XIX, San Diego.
-
Frary, A., Xu, Y., Liu, J., Mitchell, S., Tedeschi, E., Tanksley, S., 2005. Development of a set of PCR-based anchor markers encompassing the tomato genome and evaluation of their usefulness for genetics and breeding experiments. Theor Appl. Genet. 111(2):291-312. (doi:10.1007/s001 22-005-2023-7) Epub 2005 May 31, PMID:15926074.
-
Geethanjali, S., Kadirvel, P., Peña, R.D., Rao, E.S., Wang, J., 2010. Development of tomato SSR markers from anchored BAC clones of chromosome 12 and their application for genetic diversity analysis and linkage mapping. Euphytica, 178:283-295.
-
Giorgi, F., Lionello, P., 2007. Climate change projections for the Mediterranean region. Global and Planetary Change. 63:90-104 (10.1016/j. gloplacha.2007.09.005).
-
IPCC, 2007. Climate Change 2007:Synthesis Report. In:R.K. Pachauri, A. Reisinger (Eds.):Contribution of Working Goups I, II and III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. IPCC, Geneva, Switzerland, 104p.
-
Korir, N.K., Diao, W., Tao, R., Li, X., Kayesh, E., Li, A., Zhen, W., Wang, S., 2014. Genetic diversity and relationships among different tomato varieties revealed by EST-SSR markers. Genetics and molecular research:GMR, 13(1):43-53.
-
Kwon, Y., Park, S., Yi, S., 2010. Assessment of genetic variation among commercial tomato (Solanum lycopersicum L.) varieties using SSR markers and morphological characteristics Genes & Genomics, 31:1-10.
-
Lee, L.S., Henry, R.J., 2001. Commercial applications of plant genotyping. In R.J. Henry (Ed):Plant Genotyping:The DNA Fingerprinting Plants. CABI Publ., Oxen, pp:265-273.
-
Mazzucato, A., Papa, R., Bitocchi, E., Mosconi, P., Nanni, L., Negri, V., Picarella, M.E., Siligato, F., Soressi, G.P., Tiranti, B., Veronesi, F., 2007. Genetic diversity, structure and marker-trait associations in a collection of Italian tomato (Solanum lycopersicum L.) landraces. Theoretical and Applied Genetics, 116:657-669.
-
Muños, S., Ranc, N., Botton, E., 2011. Increase in tomato locule number is controlled by two single-nucleotide polymorphisms located near Wuschel. Plant Physiology, 156:2244-2254.
-
Naik, P., Singh, M., Ranjan, J., 2017. Impact of Climate Change on Vegetable Production and Adaptation Measures (10.1007/978-981-10-5744-1-19).
-
Parmar, P., Oza, V.P., Chauhan, V., Patel, A.D., Kathiria, K.B., Subramanian, R.B., 2010. Genetic diversity and DNA fingerprint study of tomato discerned by SSR markers. International Journal of Biotechnology and Biochemistry, 6(5):657+.
-
Pons, C., Casals, J., Palombieri, S., Fontanet, L., Riccini, A., Rambla, J.L., Ruggiero, A., Figás, M.R., Plazas, M., Koukounaras, A., Picarella, M.E., Sulli, M., Fisher, J., Ziarsolo, P., Blanca, J., Cañizares, J., Cammareri, M., Vitiello, A., Batelli, G., Kanellis, A., Brouwer, M., Finkers, R., Nikoloudis, K., Soler, S., Giuliano, G., Grillo, S., Grandillo, S., Zamir, D., Mazzucato, A., Causse, C., Díez, M.J., Prohens, J., Monforte, A.J., Granell, A., 2022. Atlas of phenotypic, genotypic and geographical diversity present in the European traditional tomato. Horticulture Research, 9(112), (https://doi.org/10.1093/hr/uhac112).
-
Powell, W., Machray, G.C., Provan, J., 1996. Polymorphism revealed by simple sequence repeats. Trend in Plant Science, 96:1360-1385.
-
Rohlf, J.F., 2000. NTSYSpc Numerical Taxonomy and Multivariate Analysis System Version 2.1. User Guide, Department of Ecology and Evolution State University of New York.
-
Ruiz, J.J, Garcia-Martinez, S., Pico, B., Quiros, C.F., Gao M., 2005. Genetic Variability and Relationship of closely related Spanish traditional cultivars of tomato as detected by SRAP and SSR. J. Amer. Soc. Hort. Sci. 130(1):88-94.
-
Sim, S.C., Van Deynze, A., Stoffel, K., 2012. High-density SNP genotyping of tomato (Solanum lycopersicum L.) reveals patterns of genetic variation due to breeding. PLoS One 7, e45520.
-
Suliman-Pollatschek, S., Kashkush, K., Shats, H., Hillel, J., Lavi, U., 2002. Generation and mapping of AFLP, SSRs, and SNPs in Lycopersicon esculentum, Cell Mol Biol Letts, 7:583-597.
-
UPOV-BMT, 2002. BMT/36f1O Progress report of the 36. session of the technical committee, the technical working parties and working group on biochemical and molecular techniques and DNA-profiling in particular, Geneva.
-
Vijayakumar, A., Shaji, S., Beena, R., Sarada, S., Sajitha Rani, T., Stephen, R., Manju, R.V., Viji, M., 2021. High temperature induced changes in quality and yield parameters of tomato (Solanum lycopersicum L.) and similarity coefficients among genotypes using SSR markers. Heliyon, 7.
-
Yang, W., Bai, X., Kabelka, E., Eaton, C., Kamoun, S., Van der Kannp, E., Francis, D., 2004. Discovery of single nucleotide polymorphisms in Lycopersicon esculentum by computer aided analysis of expressed sequence tags. Mol Breeding 14:21-34.