Conference Paper
BibTex RIS Cite

İklim Değişikliğinin Sebze Üretimi Üzerine Etkileri ve Buna Karşı Adaptasyon Stratejilerinin Değerlendirilmesi

Year 2022, Volume: 51 Issue: (Özel Sayı 1) 13. Sebze Tarımı Sempozyumu, 310 - 321, 19.12.2022

Abstract

İklim değişikliğinin 1800’lü yıllarda gündeme geldiği, günümüzün en önemli araştırma konuları arasında yer aldığı, doğal olaylardan daha çok insan faaliyetleri sonucunda meydana geldiği birçok bilimsel kaynakta belirtilmektedir. Böylece hem ulusal hem de uluslararası çerçevede iklim değişikliğinin günümüzde ve gelecekte olası etkileri ve bu etkilere karşı alınabilecek önlemlerle ilgili olarak birtakım mevzuatlar oluşturulmuştur. İklim değişikliğine bağlı olarak küresel ısınmanın şüphesiz etkileyeceği en önemli alanlar arasında tarımsal uygulamalar gelmektedir. Türkiye tarımsal üretimi içerisinde 30 milyon 869 bin tonluk sebze üretimi ile dünyada dördüncü sırada yer almaktadır. Sebzeler, insan beslenmesi için oldukça önemli olup bahçe tarımı içerisinde geniş potansiyeli olan ürün grubunu içermektedir. İklim değişikliği sonucunda, biyotik ve abiyotik stres faktörlerinden kaynaklı bitkide fizyolojik faaliyetleri de büyük ölçüde etkileyeceği ön görülmektedir. Bundan dolayı da sebze üretiminde, verim ve kalitede düşüşlerin beklendiği, farklı literatürlerde yer almaktadır. Bu derlemede iklim değişikliği kapsamında sebze üretimini kısıtlayıp üretimi doğrudan tehdit edebilecek CO₂, CH₄ gibi gazların artmasından kaynaklı biyotik ve abiyotik faktörlerin bitki fizyolojisi üzerine etkileri ve söz konusu tehditlere karşı alınabilecek önlemler değerlendirilmiştir. Aynı zamanda, iklim değişikliğine bağlı olarak sebze üretimindeki değişikliklerle beraber bu duruma uyum stratejilerini içeren çoğunlukla güncel (2010-2022) bilimsel çalışmaları özetleyerek sürdürülebilir sebze üretimi sorunlarına farklı görüşler derlenmiştir.

References

  • Abdelrahman, M., Phan Tran, L.S., Shigyo, M., 2022. Physiological and molecular perspectives of stress tolerance in vegetables. Frontiers in Plant Science 3018.
  • Abid, M., Malik, S.A., Bilal, K., Wajid, R.A., 2002. Response of okra (Abelmoschus esculentus L.) to EC and SAR of Irrigation Water. International Journal of Agriculture Biology 4(3):311-314.
  • Agüera, E., Ruano, D., Cabello, P., de la Haba, P. 2006. Impact of atmospheric CO₂ on growth, photosynthesis and nitrogen metabolism in cucumber (Cucumis sativus L.) plants. Journal of Plant Physiology 163(8):809-817.
  • Aktepe, B.P., 2021. Domateste bakteriyel benek hastalığının biyolojik mücadelesinde farklı bitki aktivatörleri ve biyolojik preparatların etkisi. Mustafa Kemal Üniversitesi Tarım Bilimleri Dergisi 26(2):355-364.
  • Aloni, B., Pressman, E., Karni, L., 1999. The effect of fruit load defoliation and night temperature on the morphology of pepper flowers and on fruit shape. Annals of Botany 83:529-534.
  • Altinok, H.H., Dikilitas, M., 2014. Antioxydant response to biotic and abiotic inducers for the resistance against fusarium wilt disease in eggplant (Solanum melongena L.). Acta Botanica Croatica 73(1):79-92.
  • Ateş, M., Karatepe, A., 2013. Üniversite öğrencilerinin “küresel ısınma” kavramına ilişkin algılarının metaforlar yardımıyla analizi. Marmara Coğrafya Dergisi 27:221-241.
  • Ayyogari, K., Sidhya, P., Pandit, M.K., 2014. Impact of climate change on vegetable cultivation-a review. International Journal of Agriculture, Environment and Biotechnology 7(1):145-155.
  • Bebber, D.P., Holmes, T., Gurr, S.J., 2014. The global spread of crop pests and pathogens. Global Ecology and Biogeography 23(12):1398-1407.
  • Bebber, D.P., 2015. Range-expanding pests and pathogens in a warming world. Annual Review of Phytopathology 53:335-356.
  • Beed, F. Benedetti, A., Cardinali, G., Chakraborty, S., Dubois, T., Garrett, K., Halewood, M., 2015. Micro-organism genetic resources for food and agriculture and climate change. In Coping with climate change The roles of genetic resources for food and agriculture Food and Agriculture Organization of the United Nations (FAO). Rome (Italy) pp:87-98.
  • Bezemer, T.M., Knight, K., Newington, E.J., Jones, T.H., 1999. How general are aphid responses to elevated atmospheric CO₂? Annals of the Entomological Society of America 92:724-730.
  • Bisbis, M.B., Gruda, N., Blanke, M., 2018. Potential impacts of climate change on vegetable production and product quality-A review. Journal of Cleaner Production 170:1602-1620.
  • Bustan, A., Sagi, M., Malach, Y.D., Pasternak, D., 2004. Effects of saline irrigation water and heat waves on potato production in an arid environment. Field Crops Research 90(2-3):275-285.
  • Canpolat, S., Maden, S., 2017. Fasulye köşeli yaprak lekesi (Pseudocercospora griseola (Sacc.) Crous & Braun) hastalığının inokulum kaynaklarının belirlenmesi. Bitki Koruma Bülteni 57(1):39-47.
  • Chakraborty S, Luck J, Hollaway, G., Freeman, A., Norton, R., Garret, K.A., Percy, K., Hopkins, A., Davis, C., Karnosky, D., 2008. Impacts of global change on diseases of agricultural crops and forest trees. CAB Reviews:Perspectives in Agriculture, Veterinary Science, Nutrition and Natural Resources 3(54):1-15.
  • Choi, E.Y., Seo, T.C., Lee, S.G., Cho, I.H., Stangoulis, J., 2011. Growth and physiological responses of Chinese cabbage and radish to long-term exposure to elevated carbon dioxide and temperature. Horticulture, Environment, and Biotechnology 52(4):376-386.
  • Davis, J.H.C., 1997. Phaseolus beans. In:Wien, H.C. (ed.) The Physiology of Vegetable Crops. CAB International, Wallingford, UK, pp:409-428.
  • Dereboylu, A.E., Tort, N., 2010. Bazı aktivatör ve fungisit uygulamalarının Cucumis sativus L.(hıyar) bitkisinde verim-kalite üzerine etkisi. Fen Bilimleri Dergisi 31:(1).
  • Desprez-Loustau, M., Marcais, B., Nageleisen, L., Piou, D., Vannini, A., 2006. Interactive effects of drought and pathogens in forest trees. Annals of Forest Science 63:597-612.
  • Desneux, N., Luna, M.G., Guillemaud, T., Urbaneja, A., 2011. The invasive South American tomato pinworm, Tuta absoluta, continues to spread in Afro-Eurasia and beyond:The new threat to tomato world production. Journal of Pest Science 84:403-408.
  • Dkhil, B.B., Denden, M., 2010. Salt stress induced changes in germination sugars starch and enzyme of carbohydrate metabolism in Abelmoschus esculentus L. (Moench.) seeds. African Journal of Agricultural Research 5(12):1412-1418.
  • Ebert, A.W., 2017. Vegetable production, diseases, and climate change. World Agricultural Resources and Food Security 17:103-124.
  • Ebert, A.W., Kenyon, L., 2017. Ensuring the genetic diversity of tomato. AVRDC -The World Vegetable Center, Taiwan. pp:143-169.
  • Endersby, N.M., Morgan, W.C., 1991. Alternatives to synthetic chemical insecticides for use in crucifer crops. Biological Agriculture Horticulture 8(1):33-52.
  • Erickson, A.N., Markhart, A.H., 2002. Flower developmental stage and organ sensitivity of bell pepper (Capsicum annuum L.) to elevated temperature. Plant Cell Environment 25:123-130.
  • FAO, 2022. Food and Agriculture Organization of the United Nations (https://www.fao.org/faostat/en/#data/qcl; Erişim:11.08.2022).
  • Flavin, C., 1990. Slowing global warming. Environmental science technology 24(2):170-171.
  • Flexas, J., Barbour, M.M., Brendel, O., Cabrera, H.M., Carriqui, M., Diaz-Espejo A., Douthe, C., Dreyer, E., Ferrio, J., Gago, J., Gallé, A., Galmés, A., Kodama, N., Medrano, H., Niinemets, Ü., Peguero-Pina, J.J., Pou, A., Ribas-Carbó, M., Tomás, M., Tosens, T., Warren C.R., 2012. Mesophyll diffusion conductance to CO₂:an unappreciated central player in photosynthesis. Plant Science 196(31):70-84.
  • Hanson, P.M., Wang, J.F., Licardo, O., Hanudin, M.S.Y., Hartman, G.L., Lin, Y.C., Chen, J.T., 1996. Variable reaction of tomato lines to bacterial wilt evaluated at several locations in Southeast Asia. HortScience 31(1):143-146.
  • Hao, X., Hale, B.A., Ormrod, D.P., 1997., The effects of ultraviolet B radiation and carbon dioxide on growth and photosynthesis of tomato. Canadian Journal of Botany 75(2):213-219.
  • Heckwolf, M., Pater, D., Hanson, D.T., Kaldenhoff, R., 2011. The Arabidopsis thaliana aquaporin AtPIP1;2 is a physiologically relevant CO₂ transport facilitator. Plant Journal 67(5):795-804.
  • Jaleel, C.A., Manivannan, P., Lakshmanan, G.M.A., Gomathinayagam, M., Panneerselvam, R., 2008. Alterations in morphological parameters and photosynthetic pigment responses of Catharanthus roseus under soil water deficits. Colloids Surf. B:Biointerfaces 61(2):298-303.
  • Jones, P.D., Wigley, T.M., 1990. Global warming trends. Scientific American 263(2):84-91.
  • Kacira, M. 2022. Geleceğin tarımına doğru yeni teknolojiler. 13. Sebze Tarımı Sempozyumu, 21-23 Eylül. İzmir.
  • Kaçar, B., Katkat, A.V., Öztürk, Ş., 2013. Bitki Fizyolojisi. Nobel Akademik Yayıncılık, Ankara. pp:558.
  • Karaman, S., Gökalp, Z., 2010. Küresel ısınma ve iklim değişikliğinin su kaynakları üzerine etkileri. Tarım Bilimleri Araştırma Dergisi 3(1):59-66.
  • Karl, T.R., Kukla, G., Razuvayev, V.N., Changery, M.J., Quayle, R.G., Heim, R.R. Jr, Easterling, D.R. Fu, C.B., 1991. Global warming:evidence for asymmetric diurnal temperature change. Geophysical Research Letters 18(12):2253-2256.
  • Kenar, N., Ketenoğlu, O., 2009. Güneş kaynaklı ultraviyole radyasyonunun karasal ekosistemler üzerine etkileri. Selçuk Üniversitesi Fen Fakültesi Fen Dergisi 2(33):67-77.
  • Kıran, S., Kuşvuran, Ş., Özkay, F., Özgün, Ö., Sönmez, K., Özbek, H., Ellialtıoğlu, Ş.Ş., 2015. Bazı patlıcan anaçlarının tuzluluk stresi koşullarındaki gelişmelerinin karşılaştırılması. Tarım Bilimleri Araştırma Dergisi 8(1):20-30.
  • Korkmaz, H., Durmaz, A., 2017. Bitkilerin abiyotik stres faktörlerine verdiği cevaplar. Güfbed/Gustıj 7(2):192-207.
  • Kumari, M., Verma, S.C., Shweta., 2018. Climate change and vegetable crops cultivation:a review. Indian Journal of Agricultural Sciences 88(2):167-174.
  • Lake, J., Wade, R., 2009. Plant-pathogen interactions and elevated CO₂:Morphological changes in favour of pathogens. Journal of Experimental Botany 60(11):3123-3131.
  • Luck, J., Spackman, M., Freeman, A., Tre˛ Bicki, P., Griffiths, W., Finlay, K., Chakraborty, S., 2011. Climate change and diseases of food crops. Plant Pathology 60(1):113-121.
  • Machado, R.M.A., Serralheiro, R.P., 2017. Soil salinity:effect on vegetable crop growth. Management practices to prevent and mitigate soil salinization. Horticulturae 3:30.
  • Maloy, O.C., 2005. Plant disease management. The Plant Health Instructor.
  • Mironidis, G.K., Savopoulou-Soultani, M., 2010. Effects of heat shock on survival and reproduction of Helicoverpa armigera (Lepidoptera:Noctuidae) adults. Journal of Thermal Biology 35(2):59-69.
  • Moretti, C.L., Mattos, L.M., Calbo, A.G., Sargent, S.A., 2010. Climate changes and potential impacts on postharvest quality of fruit and vegetable crops:A review. Food Research International 43(7):1824-1832.
  • Natesh, H.N., Abbey, L., Asiedu, S.K., 2017. An overview of nutritional and antinutritional factors in green leafy vegetables. Horticulture International Journal 1(2):58‒65.
  • Newton, A.C., Johnson, S.N., Gregory, P.J., 2011. Implications of climate change for diseases, crop yields and food security. Euphytica 179(1):3-18.
  • Pangga, I.B., Hanan, J., Chakraborty, S., 2013. Climate change impacts on plant canopy architecture:Implications for pest and pathogen management. European Journal of Plant Pathology 135:595-610.
  • Park, S.K., Kim, S.H., Park, H.G., Yoon, J.B., 2009. Capsicum germplasm resistant to pepper anthracnose differentially interact with Colletotrichum isolates. Horticulture Environment and Biotechnology 50(1):17-23.
  • Paulsen, G.M., 1994. High temperature responses of crop plants. Physiology and Determination of Crop Yield pp:365-389.
  • Peet, M.M., Sato, S., Gardner, R.G., 1998. Comparing heat stress effects on male‐fertile and male‐sterile tomatoes. Plant, Cell and Environment 21:225-231.
  • Peet, M.M., Wolfe, D.W., 2000. Crop ecosystem responses to climatic change:vegetable crops. Climate Change and Global Crop Productivity pp:213-243.
  • Pena, R., Hughes, J., 2007. Improving vegetable productivity in a variable and changing climate. SAT e Journal 4(1):1-23.
  • Pınar, H., Atilla, A.T.A., Keleş, D., Mutlu, N., Denli, N., Ünlü, M., 2013. Domates hatlarında Fusarium oxysporum f.sp. lycopersici’ye dayanıklılığın moleküler markörler yardımıyla belirlenmesi. Derim 30(1):15-23.
  • Picken, A.J.F., 1984. A review of pollination and fruit set in the tomato (Lycopersicon esculentum Mill.). Journal Horticultural Science 59(1):1-13.
  • Pressman, E., Moshkovitch, H., Rosenfeld, K., Shaked, R., Gamliel, B., Aloni, B., 1998. Influence of low night temperatures on sweet pepper flower quality and the effect of repeated pollinations with viable pollen on fruit setting. Journal of Horticultural Science Biotechnology 73(1):131-136.
  • Raza, A., Razzaq, A., Mehmood, S.S., Zou, X., Zhang, X., Lv, Y., Xu, J., 2019. Impact of climate change on crops adaptation and strategies to tackle its outcome:A review. Plants 8(2):34.
  • Reid, C.D., Fiscus, E.L., 1998. Effects of elevated CO₂ and/or ozone on limitations to CO₂ assimilation in soybean (Glycine max). Journal of Experimental Botany 49(322):885-895.
  • Rivero, R.M., Ruiz, J.M., Sanchez, E., Romero, L., 2003. Does grafting provide tomato plants an advantage against H₂O₂ production under conditions of thermal shock. Physiologia Plantarum 117:44-50.
  • Rylski, I., Aloni, B., Karni, L., Zaidman, Z., 1994. Flowering fruit set fruit development and fruit quality under different environmental conditions in tomato and pepper crops. Acta Horticulturae 366:45-56.
  • Sairam, R.K., Kumutha, D., Ezhilmathi, K., Deshmukh, P.S., Srivastava, G.C., 2008. Physiology and biochemistry of water logging tolerance in plants. Biologia Plantarum 52(3):401-412.
  • Samtiya, M., Aluko, R.E., Dhewa, T., Moreno-Rojas, J.M., 2021. Potential health benefits of plant food-derived bioactive components:An overview. Foods 10(4):839.
  • Sarıkamış, G., 2014. Sebze ıslahında moleküler yaklaşımlar. Türk Bilimsel Derlemeler Dergisi (2):80-83.
  • Satar, S., Kersting, U., Uygun, N., 2005. Effect of temperature on development and fecundity of Aphis gossypii Glover (Homoptera:Aphididae) on cucumber. Journal of Pest Science 78:133-137.
  • Shabani, F., Kumar, L., Esmaeili, A., 2013. Use of Climex, land use and topography to refine areas suitable for date palm cultivation in Spain under climate change scenarios. Journal of Earth Science Climatic Change 4:4.
  • Silva, R.S., Kumar, L., Shabani, F., Picanço, M.C., 2017. Assessing the impact of global warming on worldwide open field tomato cultivation through CSIRO-Mk30 global climate model. The Journal of Agricultural Science 155(3):407-420.
  • Singh, A.K., 2010. Climate change sensitivity of Indian horticulture role of technological interventions. Souvenir of Fourth Indian Horticultural Congress HSI, New Delhi. pp:85-95.
  • Singh, S.P., Singh, P., 2015. Effect of temperature and light on the growth of algae species:A review. Renewable and Sustainable Energy Reviews 50:431-444.
  • Spaldon, S., Samnotra, R.K., Chopra, S., 2015. Climate resilient technologies to meet the challenges in vegetable production. International Journal of Current Research and Academic Review 3(2):28-47.
  • Srivastava, A.C., Tiwari, L.D., Pal, M., Sengupta, U.K., 2002. CO₂-mediated changes in mung bean chemistry:Impact on plant herbivore interactions. Current Science 82(9):1148-1151.
  • Sun, Y., Yin, J., Cao, H., Li, C., Kang, L., Ge, F., 2011. Elevated CO₂ influences nematode-induced defense responses of tomato genotypes differing in the JA pathway. PLoS One 6(5):1-9.
  • Steven, M.A., Rudich, J., 1978. Genetic potential for overcoming physiological limitations on adaptability yield and quality in tomato. HortScience 13:673-678.
  • Stone, T.F., Thompson, J.R., Rosentrater, K.A., Nair, A., 2021. A life cycle assessment approach for vegetables in large-, mid-, and small-scale food systems in the Midwest us. Sustainability 13(20):11368.
  • Şevik, M.A., Deligöz, İ., 2016. Ülkemizde domateslerde görülen yeni bir viral etmen:Pepino mosaic virus (PepMV). Yüzüncü Yıl Üniversitesi Tarım Bilimleri Dergisi 26(2):300-307.
  • Taiz, L., Zeiger, E., 2008. Bitki Fizyolojisi. 3. Baskıdan Çeviri (Türkkan, İsmail), Palme Yayıncılık, Ankara, 690s.
  • Tarım ve Orman Bakanlığı Tarım Reformu Genel Müdürlüğü, İklim değişikliği ve tarım değerlendirme raporu (https://www.tarimorman. gov.tr/trgm/belgeler/ıklım%20degısıklıgı%20ve%20tarım%20degerlendırme%20raporu.pdf).
  • Tartachnyk, I.I., Blanke, M.M., 2007. Photosynthesis and transpiration of tomato and CO₂ fluxes in a greenhouse under changing environmental conditions in winter. Annals of applied biology 150(2):149-156.
  • Terashima, I., Hanba, Y.T., Tholen, D. Niinemets, U., 2011. Leaf functional anatomy in relation to photosynthesis. Plant Physiology 155(1):108-116.
  • Than, P.P., Jeewon, R., Hyde, K.D., Pongsupasamit, S., Mongkolporn, O., Taylor, P.W.J., 2008. Characterization and pathogenicity of Colletotrichum species associated with anthracnose on chili (Capsicum spp.) in Thailand. Plant Pathology 57:562-572.
  • Turhan, A., Kuşçu, H., 2019. Tuzluluk stresinin patlıcanda (Solanum melongena L.) su kullanım etkinliği, verim bileşenleri, yaprak klorofil ve karotenoid içeriği üzerine etkileri. Yüzüncü Yıl Üniversitesi Tarım Bilimleri Dergisi 29(1):61-68.
  • TÜİK, 2022. Bitkisel üretim istatistikleri (https://data.tuik.gov.tr/kategori/getkategori?p=tarim-111&dil=1; Erişim:25.07.2022).
  • Türkeş, M., 2012. Türkiye’de gözlenen ve öngörülen iklim değişikliği, kuraklık ve çölleşme. Ankara Üniversitesi Çevrebilimleri Dergisi 4(2):1-32.
  • Uysal, Y., 2022. İklim değişikliği ve küresel ısınma ile mücadelede yerel yönetimlerin rolü:tespitler ve öneriler. Kesit Akademisi Dergisi 30:324-354.
  • Ünel, N.M., 2018. Salatalıkta ısı şoku proteinlerinin biyoinformatik analizleri ve abiyotik stres koşullarına tepkisinin omiks yaklaşımlar kullanılarak incelenmesi (Yüksek Lisans Tezi). Kastamonu Üniversitesi Fen Bilimleri Enstitüsü Genetik ve Biyomühendislik Anabilim Dalı, Kastamonu, 175s.
  • Yalçın, G.E., Kara, F.Ö., 2014. Küresel iklim değişikliğinin Türkiye’de tarımsal üretime etkileri ve çözüm önerileri. 11. Ulusal Tarım Ekonomisi Kongresi 3(5):195-199.
  • Wang, X., Zou, C., Zhang, Y., Shi, X., Liu, J., Fan, S., Liu, Y., Du, Y., Zhao, Q., Tan, Y., Wu, C., Chen, X., 2018. Environmental impacts of pepper (Capsicum annuum L) production affected by nutrient management:a case study in southwest China. Journal of Cleaner Production 171:934-943.
  • Wien, H.C., 1997. The cucurbits:cucumber, melon, squash and pumpkin. In:Wien, H.C. (ed.) The Physiology of Vegetable Crops. CAB International, Wallingford, UK, pp:345-386.
  • Xu, C., Wang, M.T., Yang, Z.Q., Zheng, Q.T., 2020. Low temperature and low irradiation induced irreversible damage of strawberry seedlings. Photosynthetica 58(1):156-164.

Effects of Climate Change on Vegetable Production and Evaluation of Adaptation Strategies

Year 2022, Volume: 51 Issue: (Özel Sayı 1) 13. Sebze Tarımı Sempozyumu, 310 - 321, 19.12.2022

Abstract

Climate change came to the fore in the 1800s, is among the most important research topics of today has been pointed out in many scientific sources, and that it occurs as a result of human activities rather than natural events. Thus, a number of legislations have been established regarding the possible effects of climate change today and in the future, and the measures that can be taken against these effects, both nationally and internationally. Agricultural practices are among the most important parts that will undoubtedly be affected by global warming due to climate change. Turkey ranks fourth in the world with 30 million 869 thousand tons of vegetable production. Vegetables are very important for human nutrition and include a large potential product group in horticulture. As a result of climate change, it is predicted that biotic and abiotic stress factors will greatly affect the physiological activities of the plant. Therefore, it is pointed in different literatures that decreases in yield and quality are expected in vegetable production. In this review, the effects of biotic and abiotic factors on plant physiology caused by the increase of gases such as CO₂, CH₄, which may limit vegetable production and directly threaten production within the scope of climate change, and the measures that can be taken against these threats are evaluated. Thus, by summarizing mainly current (2010-2022) scientific studies, which include changes in vegetable production due to climate change, as well as adaptation strategies to this situation, different views on the problems of sustainable vegetable production have been compiled.

References

  • Abdelrahman, M., Phan Tran, L.S., Shigyo, M., 2022. Physiological and molecular perspectives of stress tolerance in vegetables. Frontiers in Plant Science 3018.
  • Abid, M., Malik, S.A., Bilal, K., Wajid, R.A., 2002. Response of okra (Abelmoschus esculentus L.) to EC and SAR of Irrigation Water. International Journal of Agriculture Biology 4(3):311-314.
  • Agüera, E., Ruano, D., Cabello, P., de la Haba, P. 2006. Impact of atmospheric CO₂ on growth, photosynthesis and nitrogen metabolism in cucumber (Cucumis sativus L.) plants. Journal of Plant Physiology 163(8):809-817.
  • Aktepe, B.P., 2021. Domateste bakteriyel benek hastalığının biyolojik mücadelesinde farklı bitki aktivatörleri ve biyolojik preparatların etkisi. Mustafa Kemal Üniversitesi Tarım Bilimleri Dergisi 26(2):355-364.
  • Aloni, B., Pressman, E., Karni, L., 1999. The effect of fruit load defoliation and night temperature on the morphology of pepper flowers and on fruit shape. Annals of Botany 83:529-534.
  • Altinok, H.H., Dikilitas, M., 2014. Antioxydant response to biotic and abiotic inducers for the resistance against fusarium wilt disease in eggplant (Solanum melongena L.). Acta Botanica Croatica 73(1):79-92.
  • Ateş, M., Karatepe, A., 2013. Üniversite öğrencilerinin “küresel ısınma” kavramına ilişkin algılarının metaforlar yardımıyla analizi. Marmara Coğrafya Dergisi 27:221-241.
  • Ayyogari, K., Sidhya, P., Pandit, M.K., 2014. Impact of climate change on vegetable cultivation-a review. International Journal of Agriculture, Environment and Biotechnology 7(1):145-155.
  • Bebber, D.P., Holmes, T., Gurr, S.J., 2014. The global spread of crop pests and pathogens. Global Ecology and Biogeography 23(12):1398-1407.
  • Bebber, D.P., 2015. Range-expanding pests and pathogens in a warming world. Annual Review of Phytopathology 53:335-356.
  • Beed, F. Benedetti, A., Cardinali, G., Chakraborty, S., Dubois, T., Garrett, K., Halewood, M., 2015. Micro-organism genetic resources for food and agriculture and climate change. In Coping with climate change The roles of genetic resources for food and agriculture Food and Agriculture Organization of the United Nations (FAO). Rome (Italy) pp:87-98.
  • Bezemer, T.M., Knight, K., Newington, E.J., Jones, T.H., 1999. How general are aphid responses to elevated atmospheric CO₂? Annals of the Entomological Society of America 92:724-730.
  • Bisbis, M.B., Gruda, N., Blanke, M., 2018. Potential impacts of climate change on vegetable production and product quality-A review. Journal of Cleaner Production 170:1602-1620.
  • Bustan, A., Sagi, M., Malach, Y.D., Pasternak, D., 2004. Effects of saline irrigation water and heat waves on potato production in an arid environment. Field Crops Research 90(2-3):275-285.
  • Canpolat, S., Maden, S., 2017. Fasulye köşeli yaprak lekesi (Pseudocercospora griseola (Sacc.) Crous & Braun) hastalığının inokulum kaynaklarının belirlenmesi. Bitki Koruma Bülteni 57(1):39-47.
  • Chakraborty S, Luck J, Hollaway, G., Freeman, A., Norton, R., Garret, K.A., Percy, K., Hopkins, A., Davis, C., Karnosky, D., 2008. Impacts of global change on diseases of agricultural crops and forest trees. CAB Reviews:Perspectives in Agriculture, Veterinary Science, Nutrition and Natural Resources 3(54):1-15.
  • Choi, E.Y., Seo, T.C., Lee, S.G., Cho, I.H., Stangoulis, J., 2011. Growth and physiological responses of Chinese cabbage and radish to long-term exposure to elevated carbon dioxide and temperature. Horticulture, Environment, and Biotechnology 52(4):376-386.
  • Davis, J.H.C., 1997. Phaseolus beans. In:Wien, H.C. (ed.) The Physiology of Vegetable Crops. CAB International, Wallingford, UK, pp:409-428.
  • Dereboylu, A.E., Tort, N., 2010. Bazı aktivatör ve fungisit uygulamalarının Cucumis sativus L.(hıyar) bitkisinde verim-kalite üzerine etkisi. Fen Bilimleri Dergisi 31:(1).
  • Desprez-Loustau, M., Marcais, B., Nageleisen, L., Piou, D., Vannini, A., 2006. Interactive effects of drought and pathogens in forest trees. Annals of Forest Science 63:597-612.
  • Desneux, N., Luna, M.G., Guillemaud, T., Urbaneja, A., 2011. The invasive South American tomato pinworm, Tuta absoluta, continues to spread in Afro-Eurasia and beyond:The new threat to tomato world production. Journal of Pest Science 84:403-408.
  • Dkhil, B.B., Denden, M., 2010. Salt stress induced changes in germination sugars starch and enzyme of carbohydrate metabolism in Abelmoschus esculentus L. (Moench.) seeds. African Journal of Agricultural Research 5(12):1412-1418.
  • Ebert, A.W., 2017. Vegetable production, diseases, and climate change. World Agricultural Resources and Food Security 17:103-124.
  • Ebert, A.W., Kenyon, L., 2017. Ensuring the genetic diversity of tomato. AVRDC -The World Vegetable Center, Taiwan. pp:143-169.
  • Endersby, N.M., Morgan, W.C., 1991. Alternatives to synthetic chemical insecticides for use in crucifer crops. Biological Agriculture Horticulture 8(1):33-52.
  • Erickson, A.N., Markhart, A.H., 2002. Flower developmental stage and organ sensitivity of bell pepper (Capsicum annuum L.) to elevated temperature. Plant Cell Environment 25:123-130.
  • FAO, 2022. Food and Agriculture Organization of the United Nations (https://www.fao.org/faostat/en/#data/qcl; Erişim:11.08.2022).
  • Flavin, C., 1990. Slowing global warming. Environmental science technology 24(2):170-171.
  • Flexas, J., Barbour, M.M., Brendel, O., Cabrera, H.M., Carriqui, M., Diaz-Espejo A., Douthe, C., Dreyer, E., Ferrio, J., Gago, J., Gallé, A., Galmés, A., Kodama, N., Medrano, H., Niinemets, Ü., Peguero-Pina, J.J., Pou, A., Ribas-Carbó, M., Tomás, M., Tosens, T., Warren C.R., 2012. Mesophyll diffusion conductance to CO₂:an unappreciated central player in photosynthesis. Plant Science 196(31):70-84.
  • Hanson, P.M., Wang, J.F., Licardo, O., Hanudin, M.S.Y., Hartman, G.L., Lin, Y.C., Chen, J.T., 1996. Variable reaction of tomato lines to bacterial wilt evaluated at several locations in Southeast Asia. HortScience 31(1):143-146.
  • Hao, X., Hale, B.A., Ormrod, D.P., 1997., The effects of ultraviolet B radiation and carbon dioxide on growth and photosynthesis of tomato. Canadian Journal of Botany 75(2):213-219.
  • Heckwolf, M., Pater, D., Hanson, D.T., Kaldenhoff, R., 2011. The Arabidopsis thaliana aquaporin AtPIP1;2 is a physiologically relevant CO₂ transport facilitator. Plant Journal 67(5):795-804.
  • Jaleel, C.A., Manivannan, P., Lakshmanan, G.M.A., Gomathinayagam, M., Panneerselvam, R., 2008. Alterations in morphological parameters and photosynthetic pigment responses of Catharanthus roseus under soil water deficits. Colloids Surf. B:Biointerfaces 61(2):298-303.
  • Jones, P.D., Wigley, T.M., 1990. Global warming trends. Scientific American 263(2):84-91.
  • Kacira, M. 2022. Geleceğin tarımına doğru yeni teknolojiler. 13. Sebze Tarımı Sempozyumu, 21-23 Eylül. İzmir.
  • Kaçar, B., Katkat, A.V., Öztürk, Ş., 2013. Bitki Fizyolojisi. Nobel Akademik Yayıncılık, Ankara. pp:558.
  • Karaman, S., Gökalp, Z., 2010. Küresel ısınma ve iklim değişikliğinin su kaynakları üzerine etkileri. Tarım Bilimleri Araştırma Dergisi 3(1):59-66.
  • Karl, T.R., Kukla, G., Razuvayev, V.N., Changery, M.J., Quayle, R.G., Heim, R.R. Jr, Easterling, D.R. Fu, C.B., 1991. Global warming:evidence for asymmetric diurnal temperature change. Geophysical Research Letters 18(12):2253-2256.
  • Kenar, N., Ketenoğlu, O., 2009. Güneş kaynaklı ultraviyole radyasyonunun karasal ekosistemler üzerine etkileri. Selçuk Üniversitesi Fen Fakültesi Fen Dergisi 2(33):67-77.
  • Kıran, S., Kuşvuran, Ş., Özkay, F., Özgün, Ö., Sönmez, K., Özbek, H., Ellialtıoğlu, Ş.Ş., 2015. Bazı patlıcan anaçlarının tuzluluk stresi koşullarındaki gelişmelerinin karşılaştırılması. Tarım Bilimleri Araştırma Dergisi 8(1):20-30.
  • Korkmaz, H., Durmaz, A., 2017. Bitkilerin abiyotik stres faktörlerine verdiği cevaplar. Güfbed/Gustıj 7(2):192-207.
  • Kumari, M., Verma, S.C., Shweta., 2018. Climate change and vegetable crops cultivation:a review. Indian Journal of Agricultural Sciences 88(2):167-174.
  • Lake, J., Wade, R., 2009. Plant-pathogen interactions and elevated CO₂:Morphological changes in favour of pathogens. Journal of Experimental Botany 60(11):3123-3131.
  • Luck, J., Spackman, M., Freeman, A., Tre˛ Bicki, P., Griffiths, W., Finlay, K., Chakraborty, S., 2011. Climate change and diseases of food crops. Plant Pathology 60(1):113-121.
  • Machado, R.M.A., Serralheiro, R.P., 2017. Soil salinity:effect on vegetable crop growth. Management practices to prevent and mitigate soil salinization. Horticulturae 3:30.
  • Maloy, O.C., 2005. Plant disease management. The Plant Health Instructor.
  • Mironidis, G.K., Savopoulou-Soultani, M., 2010. Effects of heat shock on survival and reproduction of Helicoverpa armigera (Lepidoptera:Noctuidae) adults. Journal of Thermal Biology 35(2):59-69.
  • Moretti, C.L., Mattos, L.M., Calbo, A.G., Sargent, S.A., 2010. Climate changes and potential impacts on postharvest quality of fruit and vegetable crops:A review. Food Research International 43(7):1824-1832.
  • Natesh, H.N., Abbey, L., Asiedu, S.K., 2017. An overview of nutritional and antinutritional factors in green leafy vegetables. Horticulture International Journal 1(2):58‒65.
  • Newton, A.C., Johnson, S.N., Gregory, P.J., 2011. Implications of climate change for diseases, crop yields and food security. Euphytica 179(1):3-18.
  • Pangga, I.B., Hanan, J., Chakraborty, S., 2013. Climate change impacts on plant canopy architecture:Implications for pest and pathogen management. European Journal of Plant Pathology 135:595-610.
  • Park, S.K., Kim, S.H., Park, H.G., Yoon, J.B., 2009. Capsicum germplasm resistant to pepper anthracnose differentially interact with Colletotrichum isolates. Horticulture Environment and Biotechnology 50(1):17-23.
  • Paulsen, G.M., 1994. High temperature responses of crop plants. Physiology and Determination of Crop Yield pp:365-389.
  • Peet, M.M., Sato, S., Gardner, R.G., 1998. Comparing heat stress effects on male‐fertile and male‐sterile tomatoes. Plant, Cell and Environment 21:225-231.
  • Peet, M.M., Wolfe, D.W., 2000. Crop ecosystem responses to climatic change:vegetable crops. Climate Change and Global Crop Productivity pp:213-243.
  • Pena, R., Hughes, J., 2007. Improving vegetable productivity in a variable and changing climate. SAT e Journal 4(1):1-23.
  • Pınar, H., Atilla, A.T.A., Keleş, D., Mutlu, N., Denli, N., Ünlü, M., 2013. Domates hatlarında Fusarium oxysporum f.sp. lycopersici’ye dayanıklılığın moleküler markörler yardımıyla belirlenmesi. Derim 30(1):15-23.
  • Picken, A.J.F., 1984. A review of pollination and fruit set in the tomato (Lycopersicon esculentum Mill.). Journal Horticultural Science 59(1):1-13.
  • Pressman, E., Moshkovitch, H., Rosenfeld, K., Shaked, R., Gamliel, B., Aloni, B., 1998. Influence of low night temperatures on sweet pepper flower quality and the effect of repeated pollinations with viable pollen on fruit setting. Journal of Horticultural Science Biotechnology 73(1):131-136.
  • Raza, A., Razzaq, A., Mehmood, S.S., Zou, X., Zhang, X., Lv, Y., Xu, J., 2019. Impact of climate change on crops adaptation and strategies to tackle its outcome:A review. Plants 8(2):34.
  • Reid, C.D., Fiscus, E.L., 1998. Effects of elevated CO₂ and/or ozone on limitations to CO₂ assimilation in soybean (Glycine max). Journal of Experimental Botany 49(322):885-895.
  • Rivero, R.M., Ruiz, J.M., Sanchez, E., Romero, L., 2003. Does grafting provide tomato plants an advantage against H₂O₂ production under conditions of thermal shock. Physiologia Plantarum 117:44-50.
  • Rylski, I., Aloni, B., Karni, L., Zaidman, Z., 1994. Flowering fruit set fruit development and fruit quality under different environmental conditions in tomato and pepper crops. Acta Horticulturae 366:45-56.
  • Sairam, R.K., Kumutha, D., Ezhilmathi, K., Deshmukh, P.S., Srivastava, G.C., 2008. Physiology and biochemistry of water logging tolerance in plants. Biologia Plantarum 52(3):401-412.
  • Samtiya, M., Aluko, R.E., Dhewa, T., Moreno-Rojas, J.M., 2021. Potential health benefits of plant food-derived bioactive components:An overview. Foods 10(4):839.
  • Sarıkamış, G., 2014. Sebze ıslahında moleküler yaklaşımlar. Türk Bilimsel Derlemeler Dergisi (2):80-83.
  • Satar, S., Kersting, U., Uygun, N., 2005. Effect of temperature on development and fecundity of Aphis gossypii Glover (Homoptera:Aphididae) on cucumber. Journal of Pest Science 78:133-137.
  • Shabani, F., Kumar, L., Esmaeili, A., 2013. Use of Climex, land use and topography to refine areas suitable for date palm cultivation in Spain under climate change scenarios. Journal of Earth Science Climatic Change 4:4.
  • Silva, R.S., Kumar, L., Shabani, F., Picanço, M.C., 2017. Assessing the impact of global warming on worldwide open field tomato cultivation through CSIRO-Mk30 global climate model. The Journal of Agricultural Science 155(3):407-420.
  • Singh, A.K., 2010. Climate change sensitivity of Indian horticulture role of technological interventions. Souvenir of Fourth Indian Horticultural Congress HSI, New Delhi. pp:85-95.
  • Singh, S.P., Singh, P., 2015. Effect of temperature and light on the growth of algae species:A review. Renewable and Sustainable Energy Reviews 50:431-444.
  • Spaldon, S., Samnotra, R.K., Chopra, S., 2015. Climate resilient technologies to meet the challenges in vegetable production. International Journal of Current Research and Academic Review 3(2):28-47.
  • Srivastava, A.C., Tiwari, L.D., Pal, M., Sengupta, U.K., 2002. CO₂-mediated changes in mung bean chemistry:Impact on plant herbivore interactions. Current Science 82(9):1148-1151.
  • Sun, Y., Yin, J., Cao, H., Li, C., Kang, L., Ge, F., 2011. Elevated CO₂ influences nematode-induced defense responses of tomato genotypes differing in the JA pathway. PLoS One 6(5):1-9.
  • Steven, M.A., Rudich, J., 1978. Genetic potential for overcoming physiological limitations on adaptability yield and quality in tomato. HortScience 13:673-678.
  • Stone, T.F., Thompson, J.R., Rosentrater, K.A., Nair, A., 2021. A life cycle assessment approach for vegetables in large-, mid-, and small-scale food systems in the Midwest us. Sustainability 13(20):11368.
  • Şevik, M.A., Deligöz, İ., 2016. Ülkemizde domateslerde görülen yeni bir viral etmen:Pepino mosaic virus (PepMV). Yüzüncü Yıl Üniversitesi Tarım Bilimleri Dergisi 26(2):300-307.
  • Taiz, L., Zeiger, E., 2008. Bitki Fizyolojisi. 3. Baskıdan Çeviri (Türkkan, İsmail), Palme Yayıncılık, Ankara, 690s.
  • Tarım ve Orman Bakanlığı Tarım Reformu Genel Müdürlüğü, İklim değişikliği ve tarım değerlendirme raporu (https://www.tarimorman. gov.tr/trgm/belgeler/ıklım%20degısıklıgı%20ve%20tarım%20degerlendırme%20raporu.pdf).
  • Tartachnyk, I.I., Blanke, M.M., 2007. Photosynthesis and transpiration of tomato and CO₂ fluxes in a greenhouse under changing environmental conditions in winter. Annals of applied biology 150(2):149-156.
  • Terashima, I., Hanba, Y.T., Tholen, D. Niinemets, U., 2011. Leaf functional anatomy in relation to photosynthesis. Plant Physiology 155(1):108-116.
  • Than, P.P., Jeewon, R., Hyde, K.D., Pongsupasamit, S., Mongkolporn, O., Taylor, P.W.J., 2008. Characterization and pathogenicity of Colletotrichum species associated with anthracnose on chili (Capsicum spp.) in Thailand. Plant Pathology 57:562-572.
  • Turhan, A., Kuşçu, H., 2019. Tuzluluk stresinin patlıcanda (Solanum melongena L.) su kullanım etkinliği, verim bileşenleri, yaprak klorofil ve karotenoid içeriği üzerine etkileri. Yüzüncü Yıl Üniversitesi Tarım Bilimleri Dergisi 29(1):61-68.
  • TÜİK, 2022. Bitkisel üretim istatistikleri (https://data.tuik.gov.tr/kategori/getkategori?p=tarim-111&dil=1; Erişim:25.07.2022).
  • Türkeş, M., 2012. Türkiye’de gözlenen ve öngörülen iklim değişikliği, kuraklık ve çölleşme. Ankara Üniversitesi Çevrebilimleri Dergisi 4(2):1-32.
  • Uysal, Y., 2022. İklim değişikliği ve küresel ısınma ile mücadelede yerel yönetimlerin rolü:tespitler ve öneriler. Kesit Akademisi Dergisi 30:324-354.
  • Ünel, N.M., 2018. Salatalıkta ısı şoku proteinlerinin biyoinformatik analizleri ve abiyotik stres koşullarına tepkisinin omiks yaklaşımlar kullanılarak incelenmesi (Yüksek Lisans Tezi). Kastamonu Üniversitesi Fen Bilimleri Enstitüsü Genetik ve Biyomühendislik Anabilim Dalı, Kastamonu, 175s.
  • Yalçın, G.E., Kara, F.Ö., 2014. Küresel iklim değişikliğinin Türkiye’de tarımsal üretime etkileri ve çözüm önerileri. 11. Ulusal Tarım Ekonomisi Kongresi 3(5):195-199.
  • Wang, X., Zou, C., Zhang, Y., Shi, X., Liu, J., Fan, S., Liu, Y., Du, Y., Zhao, Q., Tan, Y., Wu, C., Chen, X., 2018. Environmental impacts of pepper (Capsicum annuum L) production affected by nutrient management:a case study in southwest China. Journal of Cleaner Production 171:934-943.
  • Wien, H.C., 1997. The cucurbits:cucumber, melon, squash and pumpkin. In:Wien, H.C. (ed.) The Physiology of Vegetable Crops. CAB International, Wallingford, UK, pp:345-386.
  • Xu, C., Wang, M.T., Yang, Z.Q., Zheng, Q.T., 2020. Low temperature and low irradiation induced irreversible damage of strawberry seedlings. Photosynthetica 58(1):156-164.
There are 91 citations in total.

Details

Primary Language Turkish
Subjects Agricultural Engineering (Other)
Journal Section Makaleler
Authors

Aygül Dayan

Ceren Ayşe Bayram

Publication Date December 19, 2022
Submission Date January 1, 2022
Acceptance Date January 31, 2022
Published in Issue Year 2022 Volume: 51 Issue: (Özel Sayı 1) 13. Sebze Tarımı Sempozyumu

Cite

APA Dayan, A., & Bayram, C. A. (2022). İklim Değişikliğinin Sebze Üretimi Üzerine Etkileri ve Buna Karşı Adaptasyon Stratejilerinin Değerlendirilmesi. Bahçe, 51((Özel Sayı 1) 13. Sebze Tarımı Sempozyumu), 310-321.
AMA Dayan A, Bayram CA. İklim Değişikliğinin Sebze Üretimi Üzerine Etkileri ve Buna Karşı Adaptasyon Stratejilerinin Değerlendirilmesi. Bahçe. December 2022;51((Özel Sayı 1) 13. Sebze Tarımı Sempozyumu):310-321.
Chicago Dayan, Aygül, and Ceren Ayşe Bayram. “İklim Değişikliğinin Sebze Üretimi Üzerine Etkileri Ve Buna Karşı Adaptasyon Stratejilerinin Değerlendirilmesi”. Bahçe 51, no. (Özel Sayı 1) 13. Sebze Tarımı Sempozyumu (December 2022): 310-21.
EndNote Dayan A, Bayram CA (December 1, 2022) İklim Değişikliğinin Sebze Üretimi Üzerine Etkileri ve Buna Karşı Adaptasyon Stratejilerinin Değerlendirilmesi. Bahçe 51 (Özel Sayı 1) 13. Sebze Tarımı Sempozyumu 310–321.
IEEE A. Dayan and C. A. Bayram, “İklim Değişikliğinin Sebze Üretimi Üzerine Etkileri ve Buna Karşı Adaptasyon Stratejilerinin Değerlendirilmesi”, Bahçe, vol. 51, no. (Özel Sayı 1) 13. Sebze Tarımı Sempozyumu, pp. 310–321, 2022.
ISNAD Dayan, Aygül - Bayram, Ceren Ayşe. “İklim Değişikliğinin Sebze Üretimi Üzerine Etkileri Ve Buna Karşı Adaptasyon Stratejilerinin Değerlendirilmesi”. Bahçe 51/(Özel Sayı 1) 13. Sebze Tarımı Sempozyumu (December2022), 310-321.
JAMA Dayan A, Bayram CA. İklim Değişikliğinin Sebze Üretimi Üzerine Etkileri ve Buna Karşı Adaptasyon Stratejilerinin Değerlendirilmesi. Bahçe. 2022;51:310–321.
MLA Dayan, Aygül and Ceren Ayşe Bayram. “İklim Değişikliğinin Sebze Üretimi Üzerine Etkileri Ve Buna Karşı Adaptasyon Stratejilerinin Değerlendirilmesi”. Bahçe, vol. 51, no. (Özel Sayı 1) 13. Sebze Tarımı Sempozyumu, 2022, pp. 310-21.
Vancouver Dayan A, Bayram CA. İklim Değişikliğinin Sebze Üretimi Üzerine Etkileri ve Buna Karşı Adaptasyon Stratejilerinin Değerlendirilmesi. Bahçe. 2022;51((Özel Sayı 1) 13. Sebze Tarımı Sempozyumu):310-21.

BAHCE Journal
bahcejournal@gmail.com
https://bahcejournal.org
Atatürk Horticultural Central Research Institute, Yalova 77100 TÜRKİYE
X (Twitter)LinkedinFacebookInstagram