Conference Paper
BibTex RIS Cite

Bitkisel Üretimde Yapay Işık Kaynaklarının Kullanımı

Year 2022, Volume: 51 Issue: (Özel Sayı 1) 13. Sebze Tarımı Sempozyumu, 322 - 328, 19.12.2022

Abstract

Işık bitki gelişimi için gerekli olan çevresel faktörlerden birisidir. Doğal ışık bitkideki fotosentez faaliyeti harekete geçirerek bitkinin inorganik maddeleri organik maddelere dönüştürmesini sağlar. Bu temel işleviyle ışık tarımsal üretimde önemli bir role sahip bir üretim girdisi olarak yer alır. Yetersiz ya da düzensiz aydınlatma bitkisel üretimi kısıtlamaktadır. Bu sebeple doğal ışığın üretimi kısıtladığı yerlerde ek aydınlatma olarak yapay ışık kaynaklarının kullanımı yaygınlaşmaya başlamıştır. Kapalı ortamlarda da yapay aydınlatma ile bitkisel üretim mümkün hale gelmiştir. Yapay ışık kaynağı ve kaynaktan çıkan ışığın nitelikleri temel alınarak bitkisel üretimde yapay ışıklandırma konusunda daha iyi çözümleri öne sürmek üzerine araştırmalar yapılmaktadır. LED teknolojisi düşük enerji tüketimi ve bitkisel üretim üzerindeki olumlu etkileriyle geleneksel yapay ışık kaynaklarının yerini alarak yaygınlaşmaktadır. Bu çalışmada bitkinin ışık enerjisi ile ilişkisi incelenmiş, yapay ışıklandırma kaynaklarının nitelikleri ve LED ile yapılan aydınlatmanın çeşitli türlerdeki etkileri üzerinde durulmuştur.

References

  • Al-Khatib, K., Gary, P., 1989. Enhancement of thermal injury to photosynthesis in wheat plants and thylakoids by high light intensity. Plant Physiology 90(3):1041-1048.
  • Bean, R., Spiros, K., 2011. Light Sources Technologies and Applications. Taylor & Francis.
  • Benedetti, M., Vecchi, V., Barera, S., Dall’Osto, L., 2018. Biomass from microalgae:the potential of domestication towards sustainable biofactories. Microbial Cell Factories 17.
  • Blanchard, M., Runkle, E., 2010. Intermittent light from a rotating high-pressure sodium lamp promotes flowering of long-day plants. HortScience 45:236-241.
  • Blankenship, R.E., 1992, Origin and early evolution of photosynthesis. Photosynth Res. 33:91-111.
  • Bliznikas, Z., Arturas, Z., Samuoliene, G., Viršilė, A., Brazaitytė, A., Jankauskienė, J., Duchovskis, P., Novickovas, A., 2012. Effect of supplementary pre-harvest LED lighting on the antioxidant and nutritional properties of green vegetables. Acta Horticulturae 939:85-91.
  • Pinheiro, C., M.M. Chaves, 2011. Photosynthesis and drought:can we make metabolic connections from available data. Journal of Experimental Botany 62:869-882.
  • Christie, J.M., 2007. Phototropin blue-light receptors. Annu Rev Plant Biol. 58:21-45.
  • Çağlayan, N., Ertekin, C., 2016. Sebze üretiminde ilave LED aydınlatma uygulamaları. Tarım Makinaları Bilimi Dergisi 12(1):27-35.
  • David, M., 1973. Gates, lighting for plant growth. BioScience July 1973, 23(7):450.
  • Demotes-Mainard, S., Péron, T., Corot, A., Bertheloot, J., Gourrierec, J., Travier, S., Crespel, L., Morel, P., Huché-Thélier, L., Boumaza, R., Vian, A., Guérin, V., Leduc, N., Sakr, S., 2015. Plant responses to red and far-red lights, applications in horticulture. Environmental and Experimental Botany 121:4-21.
  • Despommier, D., 2011. The vertical farm:controlled environment agriculture carried out in tall buildings would create greater food safety and security for large urban populations. Journal für Verbraucherschutz und Lebensmittelsicherheit 6:233-236.
  • Dutta, G.S., Agarwal, A., 2017. Artificial lighting system for plant growth and development:chronological advancement, working principles, and comparative assessment. In:Dutta Gupta S. (eds) Light Emitting Diodes for Agriculture. Springer, Singapore, 334p.
  • Givnish, T.J., Montgomery, R.A., Goldstein, G., 2004. Adaptive radiation of photosynthetic physiology in the Hawaiian lobeliads:light regimes, static light responses and whole-plant compensation points. American J. of Botany 91.
  • Gül, A., 2008. Topraksız tarım. Ege Üniversitesi Ziraat Fakültesi, Hasad Yayıncılık, İzmir, 146s.
  • Hemming, S., 2009. Use of natural and artificial light in horticulture interaction of plant and technology. Acta Horticulturae. 907(1):25-35.
  • Heo, J.W., Lee, C.W., Paek, K.Y., 2006. Influence of mixed LED radiation on the growth of annual plants. J. Plant Biol. 49:286-290.
  • Hogewoning, S.W., Trouwborst, G., Maljaars, H., Poorter, H., Ieperen, W.V., Harbinson, J., 2010. Blue light dose-responses of leaf photosynthesis, morphology, and chemical composition of Cucumis sativus grown under different combinations of red and blue light. Journal of Botany 61:3117.
  • Johkan, M., Shoji, K., Goto, F., Hashida, S., Yoshihara, T., 2010. Blue light-emitting diode light irradiation of seedlings improves seedling quality and growth after transplanting in red leaf lettuce. HortScience:a Publication of the American Society for Horticultural Science 45(12):1809-1814.
  • Kacar, B., Katkat, A.V., Öztürk, Ş., 2002. Bitki fizyolojisi. Uludağ Üniversitesi Güçlendirme Vakfı, Bursa, 230s.
  • Kasajima, S., Inoue, N., Mahmud, R., Kato, M., 2008. Developmental responses of Wheat cv. Norin 61 to Fluence rate of green light. Plant Production Science 11:76-81.
  • Kianianmomeni, A., 2015. Cell-type specific photoreceptors and light signaling pathways in the multicellular green alga Volvox carteri and their potential role in cellular differentiation. Plant Signaling Behavior 10(4):e1010935.
  • Kim, H., Goins, G., Wheeler, R., Sager, J., 2005. Green-light supplementation for enhanced lettuce growth under red- and blue-light-emitting diodes. HortScience:a Publication of the American Society for Horticultural Science 39(7):1617-22.
  • Koç, C., Vatandaş, M., Koç, A.B., 2009. Led aydınlatma teknolojisi ve tarımda kullanımı. 25. Tarımsal Mekanizasyon Ulusal Kongresi, 01-03 Ekim, Isparta, s:63-70.
  • Kopsell, D.A., Sams, C.E., 2013. Increases in shoot tissue pigments, Glucosinolates, and mineral elements in sprouting broccoli after exposure to short-duration blue light from light emitting diode. J. Amer. Soc. Hort. Sci. 138(1):31-37.
  • Lee, D., Ko, Y., Shen, I., Chao, C., 2011. Effect of light source, ambient illumination, character size and interline spacing on visual performance and visual fatigue with electronic paper displays. 32(1):1-7.
  • Li, Q., Kubota, C., 2009. Effects of supplemental light quality on growth and phytochemicals of baby leaf lettuce. J. Environmental and Experimental Botany 67.
  • Losos, J.B., Mason, K.A., Singer, S.R., Raven, P.H., Johnson, G.B., 2011. Biology. McGraw-Hill Higher Education, Missouri 1239p.
  • Macedo, A.F., Marcos, V.L., Tavares, E.S., Lage, C.L.S., Esquibel, M.A., 2011. The effect of light quality on leaf production and development of in vitro cultured plants of Alternanthera brasiliana Kuntze. J. Env. and Experimental Botany 70.
  • Massa, G., Drive, A., Lafayette, W., Kim, H., Wheeler, R., Mitchell, C., 2008. Plant Productivity in Response to LED Lighting. Space Life Sciences 43(1):1951-1956.
  • McKay, M., Hesse, B., Mulder, J., 1982. The influence of illumination levels of day length extension on yield of winter-grown gladioli in Queensland. Scientia Horticulturae 17:277-288.
  • Morais, H., Medri, M.E., Marur, C.J., Caramori, P.H., Ribeiro, A.M., Gomes, J.C., 2004. Modifications on leaf anatomy of Coffea arabica caused by shade of Pigeonpea (Cajanus cajan). Braz. Arch. Biol. Technol. J. 47:863.
  • Naoya, F., Mitsuko, F., Yoshitaka, O., Sadanori, S., Shigeo, N., Hiroshi, E., 2008. Directional blue light irradiation triggers epidermal cell elongation of abaxial side resulting in inhibition of leaf Epinastyin geranium under red light condition. J. Sci. Hortic. 115:182.
  • Ohashi, K., Takase, M., Kon, N., Fujiwara, K., Kurata, K., 2007. Effect of light quality on growth and vegetable quality in leaf lettuce, spinach and Komatsuna. Environment Control in Biology 45:189
  • Pennisi, G., Orsini, F., Blasioli, S., Cellini, A., Crepaldi, A., Braschi, I., Spinelli, F., Nicola, S., Fernandez, J., Stanghellini, C., Gianquinto, G., Marcelis, L.F.M., 2019. Resource use efficiency of indoor lettuce (Lactuca sativa L.) cultivation as affected by red:blue ratio provided by Led lighting, Frontiers in Plant Science, 10.
  • Shin, K., Hosakatte, N., Heo, J., Hahn, E., Paek, K., 2008. The effect of light quality on the growth and development of in vitro cultured Doritaenopsis plants. Acta Physiologiae Plantarum 30:339-343.
  • Simpson, C., Starr, J., Church, G., Burow, M., Paterson, A., 2003. Registration of ‘NemaTAM’ peanut. Crop Science 43:1561-1561.
  • Steinger, T., Roy, B.A., Stanton, M.L., 2003. Evolution in stressful environments 2:adaptive value and costs of plasticity in response to low light in Sinapis arvensis. Journal of Evolutionary Biology 16(1):313-323.
  • Terashima, I., Fujita, T., Inoue, T., Chow, W., Oguchi, R., 2009. Green light drives leaf photosynthesis more efficiently than red light in strong white light:revisiting the enigmatic question of why leaves are green. Plant Cell Physiology 50(4):684.
  • Wentworth, M., Murchie, E.H., Gray, J.E., Villegas, D., Pastenes, C., Pinto, M., Horton, P., 2006. Differential adaptation of two varieties of common bean to abiotic stress. Journal of Experimental Botany 57:709.
  • Yanagi, T., Okamoto, K., 1997. Utilization of super-bright light emitting diodes as an artificial light source for plant growth. Acta Horticulturae 418:223-228.
  • Yeh, N., Chung, J., 2009. High-brightness LEDs energy efficient lighting sources and their potential in indoor plant cultivation. Renewable and Sustainable Energy Reviews, Elsevier 13(8):2175-2180.
  • Zhang, S., Ma, K., Chen, L., 2003. Response of photosynthetic plasticity of Paeonia suffruticosa to changed light environments. J. Environmental and Experimental Botany 49(2):121-133.
  • Zhu, X.G., Long, S.P., Ort, D.R., 2008. What is the maximum efficiency with which photosynthesis can convert solar energy into biomass? Current Opinion in Biotechnology 19(2):153.

Artificial Lighting in Vegetable Production

Year 2022, Volume: 51 Issue: (Özel Sayı 1) 13. Sebze Tarımı Sempozyumu, 322 - 328, 19.12.2022

Abstract

Light is one of the environmental factors necessary for plant growth. Natural light provides energy for photosynthesis process which plant can convert inorganic substances into organic substances. With this basic function, light plays a crucial role as an important production input in plant production. Insufficient or irregular lighting often limits crop production. Accordingly, artificial light sources have started to become popular since they serve as additional lighting in places where lighting levels should be optimized. With the help of artificial lighting systems, indoor plant production has become possible. Research on the characteristics of sources and light emitted are carried out to suggest better solutions for artificial lighting. LED technology is becoming widespread by replacing traditional artificial light sources with LEDs’ low energy consumption and positive effects on crop production. In this review, the relation between plants and light energy was emphasized, the qualities of artificial lighting sources and the effects of LED lighting on various species were examined.

References

  • Al-Khatib, K., Gary, P., 1989. Enhancement of thermal injury to photosynthesis in wheat plants and thylakoids by high light intensity. Plant Physiology 90(3):1041-1048.
  • Bean, R., Spiros, K., 2011. Light Sources Technologies and Applications. Taylor & Francis.
  • Benedetti, M., Vecchi, V., Barera, S., Dall’Osto, L., 2018. Biomass from microalgae:the potential of domestication towards sustainable biofactories. Microbial Cell Factories 17.
  • Blanchard, M., Runkle, E., 2010. Intermittent light from a rotating high-pressure sodium lamp promotes flowering of long-day plants. HortScience 45:236-241.
  • Blankenship, R.E., 1992, Origin and early evolution of photosynthesis. Photosynth Res. 33:91-111.
  • Bliznikas, Z., Arturas, Z., Samuoliene, G., Viršilė, A., Brazaitytė, A., Jankauskienė, J., Duchovskis, P., Novickovas, A., 2012. Effect of supplementary pre-harvest LED lighting on the antioxidant and nutritional properties of green vegetables. Acta Horticulturae 939:85-91.
  • Pinheiro, C., M.M. Chaves, 2011. Photosynthesis and drought:can we make metabolic connections from available data. Journal of Experimental Botany 62:869-882.
  • Christie, J.M., 2007. Phototropin blue-light receptors. Annu Rev Plant Biol. 58:21-45.
  • Çağlayan, N., Ertekin, C., 2016. Sebze üretiminde ilave LED aydınlatma uygulamaları. Tarım Makinaları Bilimi Dergisi 12(1):27-35.
  • David, M., 1973. Gates, lighting for plant growth. BioScience July 1973, 23(7):450.
  • Demotes-Mainard, S., Péron, T., Corot, A., Bertheloot, J., Gourrierec, J., Travier, S., Crespel, L., Morel, P., Huché-Thélier, L., Boumaza, R., Vian, A., Guérin, V., Leduc, N., Sakr, S., 2015. Plant responses to red and far-red lights, applications in horticulture. Environmental and Experimental Botany 121:4-21.
  • Despommier, D., 2011. The vertical farm:controlled environment agriculture carried out in tall buildings would create greater food safety and security for large urban populations. Journal für Verbraucherschutz und Lebensmittelsicherheit 6:233-236.
  • Dutta, G.S., Agarwal, A., 2017. Artificial lighting system for plant growth and development:chronological advancement, working principles, and comparative assessment. In:Dutta Gupta S. (eds) Light Emitting Diodes for Agriculture. Springer, Singapore, 334p.
  • Givnish, T.J., Montgomery, R.A., Goldstein, G., 2004. Adaptive radiation of photosynthetic physiology in the Hawaiian lobeliads:light regimes, static light responses and whole-plant compensation points. American J. of Botany 91.
  • Gül, A., 2008. Topraksız tarım. Ege Üniversitesi Ziraat Fakültesi, Hasad Yayıncılık, İzmir, 146s.
  • Hemming, S., 2009. Use of natural and artificial light in horticulture interaction of plant and technology. Acta Horticulturae. 907(1):25-35.
  • Heo, J.W., Lee, C.W., Paek, K.Y., 2006. Influence of mixed LED radiation on the growth of annual plants. J. Plant Biol. 49:286-290.
  • Hogewoning, S.W., Trouwborst, G., Maljaars, H., Poorter, H., Ieperen, W.V., Harbinson, J., 2010. Blue light dose-responses of leaf photosynthesis, morphology, and chemical composition of Cucumis sativus grown under different combinations of red and blue light. Journal of Botany 61:3117.
  • Johkan, M., Shoji, K., Goto, F., Hashida, S., Yoshihara, T., 2010. Blue light-emitting diode light irradiation of seedlings improves seedling quality and growth after transplanting in red leaf lettuce. HortScience:a Publication of the American Society for Horticultural Science 45(12):1809-1814.
  • Kacar, B., Katkat, A.V., Öztürk, Ş., 2002. Bitki fizyolojisi. Uludağ Üniversitesi Güçlendirme Vakfı, Bursa, 230s.
  • Kasajima, S., Inoue, N., Mahmud, R., Kato, M., 2008. Developmental responses of Wheat cv. Norin 61 to Fluence rate of green light. Plant Production Science 11:76-81.
  • Kianianmomeni, A., 2015. Cell-type specific photoreceptors and light signaling pathways in the multicellular green alga Volvox carteri and their potential role in cellular differentiation. Plant Signaling Behavior 10(4):e1010935.
  • Kim, H., Goins, G., Wheeler, R., Sager, J., 2005. Green-light supplementation for enhanced lettuce growth under red- and blue-light-emitting diodes. HortScience:a Publication of the American Society for Horticultural Science 39(7):1617-22.
  • Koç, C., Vatandaş, M., Koç, A.B., 2009. Led aydınlatma teknolojisi ve tarımda kullanımı. 25. Tarımsal Mekanizasyon Ulusal Kongresi, 01-03 Ekim, Isparta, s:63-70.
  • Kopsell, D.A., Sams, C.E., 2013. Increases in shoot tissue pigments, Glucosinolates, and mineral elements in sprouting broccoli after exposure to short-duration blue light from light emitting diode. J. Amer. Soc. Hort. Sci. 138(1):31-37.
  • Lee, D., Ko, Y., Shen, I., Chao, C., 2011. Effect of light source, ambient illumination, character size and interline spacing on visual performance and visual fatigue with electronic paper displays. 32(1):1-7.
  • Li, Q., Kubota, C., 2009. Effects of supplemental light quality on growth and phytochemicals of baby leaf lettuce. J. Environmental and Experimental Botany 67.
  • Losos, J.B., Mason, K.A., Singer, S.R., Raven, P.H., Johnson, G.B., 2011. Biology. McGraw-Hill Higher Education, Missouri 1239p.
  • Macedo, A.F., Marcos, V.L., Tavares, E.S., Lage, C.L.S., Esquibel, M.A., 2011. The effect of light quality on leaf production and development of in vitro cultured plants of Alternanthera brasiliana Kuntze. J. Env. and Experimental Botany 70.
  • Massa, G., Drive, A., Lafayette, W., Kim, H., Wheeler, R., Mitchell, C., 2008. Plant Productivity in Response to LED Lighting. Space Life Sciences 43(1):1951-1956.
  • McKay, M., Hesse, B., Mulder, J., 1982. The influence of illumination levels of day length extension on yield of winter-grown gladioli in Queensland. Scientia Horticulturae 17:277-288.
  • Morais, H., Medri, M.E., Marur, C.J., Caramori, P.H., Ribeiro, A.M., Gomes, J.C., 2004. Modifications on leaf anatomy of Coffea arabica caused by shade of Pigeonpea (Cajanus cajan). Braz. Arch. Biol. Technol. J. 47:863.
  • Naoya, F., Mitsuko, F., Yoshitaka, O., Sadanori, S., Shigeo, N., Hiroshi, E., 2008. Directional blue light irradiation triggers epidermal cell elongation of abaxial side resulting in inhibition of leaf Epinastyin geranium under red light condition. J. Sci. Hortic. 115:182.
  • Ohashi, K., Takase, M., Kon, N., Fujiwara, K., Kurata, K., 2007. Effect of light quality on growth and vegetable quality in leaf lettuce, spinach and Komatsuna. Environment Control in Biology 45:189
  • Pennisi, G., Orsini, F., Blasioli, S., Cellini, A., Crepaldi, A., Braschi, I., Spinelli, F., Nicola, S., Fernandez, J., Stanghellini, C., Gianquinto, G., Marcelis, L.F.M., 2019. Resource use efficiency of indoor lettuce (Lactuca sativa L.) cultivation as affected by red:blue ratio provided by Led lighting, Frontiers in Plant Science, 10.
  • Shin, K., Hosakatte, N., Heo, J., Hahn, E., Paek, K., 2008. The effect of light quality on the growth and development of in vitro cultured Doritaenopsis plants. Acta Physiologiae Plantarum 30:339-343.
  • Simpson, C., Starr, J., Church, G., Burow, M., Paterson, A., 2003. Registration of ‘NemaTAM’ peanut. Crop Science 43:1561-1561.
  • Steinger, T., Roy, B.A., Stanton, M.L., 2003. Evolution in stressful environments 2:adaptive value and costs of plasticity in response to low light in Sinapis arvensis. Journal of Evolutionary Biology 16(1):313-323.
  • Terashima, I., Fujita, T., Inoue, T., Chow, W., Oguchi, R., 2009. Green light drives leaf photosynthesis more efficiently than red light in strong white light:revisiting the enigmatic question of why leaves are green. Plant Cell Physiology 50(4):684.
  • Wentworth, M., Murchie, E.H., Gray, J.E., Villegas, D., Pastenes, C., Pinto, M., Horton, P., 2006. Differential adaptation of two varieties of common bean to abiotic stress. Journal of Experimental Botany 57:709.
  • Yanagi, T., Okamoto, K., 1997. Utilization of super-bright light emitting diodes as an artificial light source for plant growth. Acta Horticulturae 418:223-228.
  • Yeh, N., Chung, J., 2009. High-brightness LEDs energy efficient lighting sources and their potential in indoor plant cultivation. Renewable and Sustainable Energy Reviews, Elsevier 13(8):2175-2180.
  • Zhang, S., Ma, K., Chen, L., 2003. Response of photosynthetic plasticity of Paeonia suffruticosa to changed light environments. J. Environmental and Experimental Botany 49(2):121-133.
  • Zhu, X.G., Long, S.P., Ort, D.R., 2008. What is the maximum efficiency with which photosynthesis can convert solar energy into biomass? Current Opinion in Biotechnology 19(2):153.
There are 44 citations in total.

Details

Primary Language Turkish
Subjects Agricultural Engineering (Other)
Journal Section Makaleler
Authors

Batuhan Irmak This is me

Yüksel Tüzel

Publication Date December 19, 2022
Submission Date January 1, 2022
Acceptance Date January 31, 2022
Published in Issue Year 2022 Volume: 51 Issue: (Özel Sayı 1) 13. Sebze Tarımı Sempozyumu

Cite

APA Irmak, B., & Tüzel, Y. (2022). Bitkisel Üretimde Yapay Işık Kaynaklarının Kullanımı. Bahçe, 51((Özel Sayı 1) 13. Sebze Tarımı Sempozyumu), 322-328.
AMA Irmak B, Tüzel Y. Bitkisel Üretimde Yapay Işık Kaynaklarının Kullanımı. Bahçe. December 2022;51((Özel Sayı 1) 13. Sebze Tarımı Sempozyumu):322-328.
Chicago Irmak, Batuhan, and Yüksel Tüzel. “Bitkisel Üretimde Yapay Işık Kaynaklarının Kullanımı”. Bahçe 51, no. (Özel Sayı 1) 13. Sebze Tarımı Sempozyumu (December 2022): 322-28.
EndNote Irmak B, Tüzel Y (December 1, 2022) Bitkisel Üretimde Yapay Işık Kaynaklarının Kullanımı. Bahçe 51 (Özel Sayı 1) 13. Sebze Tarımı Sempozyumu 322–328.
IEEE B. Irmak and Y. Tüzel, “Bitkisel Üretimde Yapay Işık Kaynaklarının Kullanımı”, Bahçe, vol. 51, no. (Özel Sayı 1) 13. Sebze Tarımı Sempozyumu, pp. 322–328, 2022.
ISNAD Irmak, Batuhan - Tüzel, Yüksel. “Bitkisel Üretimde Yapay Işık Kaynaklarının Kullanımı”. Bahçe 51/(Özel Sayı 1) 13. Sebze Tarımı Sempozyumu (December2022), 322-328.
JAMA Irmak B, Tüzel Y. Bitkisel Üretimde Yapay Işık Kaynaklarının Kullanımı. Bahçe. 2022;51:322–328.
MLA Irmak, Batuhan and Yüksel Tüzel. “Bitkisel Üretimde Yapay Işık Kaynaklarının Kullanımı”. Bahçe, vol. 51, no. (Özel Sayı 1) 13. Sebze Tarımı Sempozyumu, 2022, pp. 322-8.
Vancouver Irmak B, Tüzel Y. Bitkisel Üretimde Yapay Işık Kaynaklarının Kullanımı. Bahçe. 2022;51((Özel Sayı 1) 13. Sebze Tarımı Sempozyumu):322-8.

BAHCE Journal
bahcejournal@gmail.com
https://bahcejournal.org
Atatürk Horticultural Central Research Institute, Yalova 77100 TÜRKİYE
X (Twitter)LinkedinFacebookInstagram