Conference Paper
BibTex RIS Cite

Sel Baskını Stresi Şartlarında Soğana Uygulanan Glisin Betain ve Prolin Uygulamalarının Besin Elementi İçeriklerine Etkisi

Year 2022, Volume: 51 Issue: (Özel Sayı 1) 13. Sebze Tarımı Sempozyumu, 390 - 395, 19.12.2022

Abstract

Prolin ve glisin betain uygulamaları kuraklığın olumsuz etkisini azaltan sonuçlar ortaya koymuştur. Bu uygulamaların sel baskını stresindeki sonuçları çok fazla irdelenmemiştir. Bu amaçla saksılarda yetiştirilen soğanlar tesadüf parselleri deneme desenine göre, bir tam sulama konusu (I₁₀₀) ve bir sel baskını stres konusu olmak üzere iki sulama konusu belirlenmiştir. Diğer taraftan üç farklı prolin dozu (1, 2 ve 3 µM) ve üç farklı glisin betain (50, 100 ve 150 µM) uygulaması ve hiçbir uygulama yapılmayan kontrol çalışmanın diğer konusunu oluşturmuştur. Çalışma 7×2=14 farklı çalışma konusundan oluşup, 3 tekrarlamalı olarak yürütülmüştür. Sel baskını stresine kadar saksılara uygulanan sulama suyu miktarları gravimetrik toprak nemi ölçme metoduna göre uygulanmıştır. Prolin ve glisin betain uygulamaları ise, tartılan örnekler saf suda çözündürüldükten sonra bitki yapraklarına sprey yöntemiyle bütün bitki kaplanacak şekilde 26 Nisan ve 9 Mayıs tarihlerinde iki defa uygulanmıştır. 10 gün sel baskını stresine maruz bırakılan bitkiler hasat edilmiştir. Hasat edilen bitkilerden alınan yaprak örneklerinde bitki besin elementi analizleri yapılmıştır. Yapılan analizler sonucunda, makro ve mikro elementlerin bütünü incelendiğinde 1 µM prolin uygulaması ve 100 µM glisin betain uygulaması stres şartlarında besin elementi alınımına katkıda bulunmuşlardır. Mevcut uygulamalar insan sağlığı ve çevre dostu uygulamalar olup, stresin olumsuz etkisini azaltmada önemli uygulamalardır.

References

  • Bacanamwo, M., Purcell, L.C. 1999. Soybean dry matter and N accumulation responses to flooding stress, N sources and hypoxia. Journal of Experimental Botany, 50(334):689-696.
  • Chen, T.H., Murata, N. 2008. Glycinebetaine:an effective protectant against abiotic stress in plants. Trends in Plant Science 13:499-505.
  • Du Jardin, P. 2015. Plant biostimulants:definition, concept, main categories and regulation. Scientia Horticulturae, 196:3-14 (https://doi.org/10.1016/j. scienta.2015.09.021).
  • Genard, H., Le Saos, J., Billard, J.P., Tremolieres, A., Boucaud, J. 1991. Effect of salinity on lipid composition, glycine betaine content and photosynthetic activity in chloroplasts of Suaeda maritima. Plant physiology and biochemistry (Paris) 29:421-427.
  • Glazebrook, H.S., Robertson, A.I. 1999. The effect of flooding and flood timing on leaf litter breakdown rates and nutrient dynamics in a river red gum (Eucalyptus camaldulensis) forest. Australian Journal of Ecology 24(6):625-635 (https://doi.org/10.1046/j.1442-9993.1999.00992.x).
  • Godoy, F., Olivos-Hernández, K., Stange, C., Handford, M. 2021. Abiotic Stress in Crop Species:Improving Tolerance by Applying Plant Metabolites. Plants 10(2):186 (https://doi.org/ 10.3390/plants10020186).
  • Gray, S.B., Brady, S.M. 2016. Plant developmental responses to climate change. Developmental Biology 419(1):64-77 (https://doi. org/10.1016/j.ydbio.2016.07.023).
  • Huang, D., Wang, D., Ren, Y. 2019. Using leaf nutrient stoichiometry as an indicator of flood tolerance and eutrophication in the riparian zone of the Lijang River. Ecological Indicators, 98:821-829.
  • Kal, Ü., Kayak, N., Dal, Y., Yavuz, D., Türkmen, Ö., Seymen, M. 2023. Application of Nitrogen to Mitigate of Adverse Effect of Flooding Stress in Lettuce. Journal of Plant Nutrition (In press).
  • Kayak, N., Kal, Ü., Dal, Y., Yavuz, D., Seymen, M. 2022. Do Proline and Glycine Betaine Mitigate the Adverse Effects of Water Stress in Spinach? Gesunde Pflanzen, pp:1-17.
  • Kianmehr, A., Ghanbary, E., Parad, G., Tabari, M., Boor, Z. 2021. Variations of Macro and Micro Nutrient Concentration in Soil and Leaf of Alnus subcordata (L.). Seedlings under Flooding Stress. Forest Research and Development 7(3):477-492.
  • Kishor, P.B.K., Sangam, S., Amrutha, R.N., Laxmi, P.S., Naidu, K.R., Rao, K.R.S.S., Rao, S., Reddy, K.J., Theriappan, P., Sreenivasulu, N. 2005. Regulation of proline biosynthesis, degradation, uptake and transport in higher plants:its implications in plant growth and abiotic stress tolerance. Current Science 88.
  • Martínez-Alcántara, B., Jover, S., Quiñones, A., Forner-Giner, M.Á., Rodríguez-Gamir, J., Legaz, F., Primo-Millo, E., Iglesias, D.J. 2012. Flooding affects uptake and distribution of carbon and nitrogen in citrus seedlings. Journal of Plant Physiology, 169(12):1150-1157 (https://doi.org/ 10.1016/j.jplph.2012.03.016).
  • Nathalie, V., Christian, H. 2008. Proline accumulation in plants:a review. Amino Acids 35:753-759.
  • Patel, P.K., Singh, A.K., Tripathi, N., Yadav, D., Hemantaranjan, A. 2014. Flooding:abiotic constraint limiting vegetable productivity. Advances in Plants and Agriculture Research, 1(3):00016 (http://dx.doi.org/10.15406/apar.2014 .01.00016).
  • Rockström, J., Williams, J., Daily, G., Noble, A., Matthews, N., Gordon, L., Wetterstrand, H., DeClerck, F., Shah, M., Steduto, P., de Fraiture, C., Hatibu, N., Unver, O., Bird, J., Sibanda, L., Smith, J. 2017. Sustainable intensification of agriculture for human prosperity and global sustainability. Ambio, 46(1):4-17 (doi:10.1007/ s13280-016-0793-6).
  • Sachdev, S., Ansari, S.A., Ansari, M.I., Fujita, M., Hasanuzzaman, M. 2021. Abiotic stress and reactive oxygen species:generation, signaling, and defense mechanisms. Antioxidants, 10(2):277 (https://doi.org/10.3390/antiox10020277).
  • Semidaa, W. M., Abdelsattar Abdelkhalika, Radyb, M.O.A., Mareyc, R.A., El-Mageedd, T.A.A., 2020. Exogenously applied proline enhances growth and productivity of drought stressed onion by improving photosynthetic efficiency, water use efficiency and up-regulating osmoprotectants. Scientia Horticulturae, 272. (doi:10.1016/j.scienta.2020.109580).
  • Seymen, M. 2021. Comparative analysis of the relationship between morphological, physiological, and biochemical properties in spinach (Spinacea oleracea L.) under deficit irrigation conditions. Turkish Journal of Agriculture and Forestry, 45(1):55-67.
  • Sharma, S., Villamor, J.G., Verslues, P.E. 2011. Essential role of tissue-specific proline synthesis and catabolism in growth and redox balance at low water potential. Plant physiology 157:292-304.
  • Soltanpour, P.N., Workman, S.M. 1981. Use of Inductively-Coupled Plasma Spectroscopy for the Simultaneous Determination of Macro and Micro Nutrients in NH₄HCO₃-DTPA Extracts of Soils. In Barnes R.M. (ed). Developments in Atomic Plasma Analysis, USA, pp:673-680 (https://doi.org/10.2136/sssaj1979.03615995004300010013x).
  • Szabados, L., Savouré, A. 2010. Proline:a multifunctional amino acid. Trends in plant science 15:89-97.
  • Teklić, T., Parađiković, N., Špoljarević, M., Zeljković, S., Lončarić, Z., Lisjak, M. 2021. Linking abiotic stress, plant metabolites, biostimulants and functional food. Annals of Applied Biology, 178(2):169-191 (https://doi. org/10.1111/aab.12651).
  • Ye, Q., Yang, X., Dai, S., Chen, G., Li, Y., Zhang, C. 2015. Effects of climate change on suitable rice cropping areas, cropping systems and crop water requirements in southern China. Agricultural Water Management 159:35-44 (https://doi.org/10. 1016/j.agwat.2015.05.022).

The Effect of Glycine Betaine and Proline Applications on Nutritional Contents in Flooding Stress Conditions

Year 2022, Volume: 51 Issue: (Özel Sayı 1) 13. Sebze Tarımı Sempozyumu, 390 - 395, 19.12.2022

Abstract

Proline and glycine betaine applications have shown results that reduce the negative effects of drought. The consequences of these practices on flood stress have not been studied much. For this purpose, two irrigation subjects, one full irrigation subject (I₁₀₀) and one flood stress subject, were determined according to the randomized plot design of onions grown in pots. On the other hand, three different proline doses (1, 2 and 3 µM) and three different glycine betaine (50, 100 and 150 µM) applications and a control that did not receive any application were the other subjects of the study. The study consisted of 7×2=14 different study subjects and was carried out with 3 replications. The amount of irrigation water applied to the pots until the flood stress was applied according to the gravimetric soil moisture measurement method. Proline and glycine betaine applications were applied to the plant leaves twice on April 26 and May 9, after the weighed samples were dissolved in pure water, by spraying the whole plant. Plants exposed to flood stress for ten days were harvested. Plant nutrient analyzes were carried out on leaf samples taken from harvested plants. As a result of the analysis, when the macro and micro elements were examined, 1 µM proline application and 100 µM glycine betaine application contributed to nutrient uptake under stress conditions. Current practices are human health and environmentally friendly practices and are important practices in reducing the negative effects of stress.

References

  • Bacanamwo, M., Purcell, L.C. 1999. Soybean dry matter and N accumulation responses to flooding stress, N sources and hypoxia. Journal of Experimental Botany, 50(334):689-696.
  • Chen, T.H., Murata, N. 2008. Glycinebetaine:an effective protectant against abiotic stress in plants. Trends in Plant Science 13:499-505.
  • Du Jardin, P. 2015. Plant biostimulants:definition, concept, main categories and regulation. Scientia Horticulturae, 196:3-14 (https://doi.org/10.1016/j. scienta.2015.09.021).
  • Genard, H., Le Saos, J., Billard, J.P., Tremolieres, A., Boucaud, J. 1991. Effect of salinity on lipid composition, glycine betaine content and photosynthetic activity in chloroplasts of Suaeda maritima. Plant physiology and biochemistry (Paris) 29:421-427.
  • Glazebrook, H.S., Robertson, A.I. 1999. The effect of flooding and flood timing on leaf litter breakdown rates and nutrient dynamics in a river red gum (Eucalyptus camaldulensis) forest. Australian Journal of Ecology 24(6):625-635 (https://doi.org/10.1046/j.1442-9993.1999.00992.x).
  • Godoy, F., Olivos-Hernández, K., Stange, C., Handford, M. 2021. Abiotic Stress in Crop Species:Improving Tolerance by Applying Plant Metabolites. Plants 10(2):186 (https://doi.org/ 10.3390/plants10020186).
  • Gray, S.B., Brady, S.M. 2016. Plant developmental responses to climate change. Developmental Biology 419(1):64-77 (https://doi. org/10.1016/j.ydbio.2016.07.023).
  • Huang, D., Wang, D., Ren, Y. 2019. Using leaf nutrient stoichiometry as an indicator of flood tolerance and eutrophication in the riparian zone of the Lijang River. Ecological Indicators, 98:821-829.
  • Kal, Ü., Kayak, N., Dal, Y., Yavuz, D., Türkmen, Ö., Seymen, M. 2023. Application of Nitrogen to Mitigate of Adverse Effect of Flooding Stress in Lettuce. Journal of Plant Nutrition (In press).
  • Kayak, N., Kal, Ü., Dal, Y., Yavuz, D., Seymen, M. 2022. Do Proline and Glycine Betaine Mitigate the Adverse Effects of Water Stress in Spinach? Gesunde Pflanzen, pp:1-17.
  • Kianmehr, A., Ghanbary, E., Parad, G., Tabari, M., Boor, Z. 2021. Variations of Macro and Micro Nutrient Concentration in Soil and Leaf of Alnus subcordata (L.). Seedlings under Flooding Stress. Forest Research and Development 7(3):477-492.
  • Kishor, P.B.K., Sangam, S., Amrutha, R.N., Laxmi, P.S., Naidu, K.R., Rao, K.R.S.S., Rao, S., Reddy, K.J., Theriappan, P., Sreenivasulu, N. 2005. Regulation of proline biosynthesis, degradation, uptake and transport in higher plants:its implications in plant growth and abiotic stress tolerance. Current Science 88.
  • Martínez-Alcántara, B., Jover, S., Quiñones, A., Forner-Giner, M.Á., Rodríguez-Gamir, J., Legaz, F., Primo-Millo, E., Iglesias, D.J. 2012. Flooding affects uptake and distribution of carbon and nitrogen in citrus seedlings. Journal of Plant Physiology, 169(12):1150-1157 (https://doi.org/ 10.1016/j.jplph.2012.03.016).
  • Nathalie, V., Christian, H. 2008. Proline accumulation in plants:a review. Amino Acids 35:753-759.
  • Patel, P.K., Singh, A.K., Tripathi, N., Yadav, D., Hemantaranjan, A. 2014. Flooding:abiotic constraint limiting vegetable productivity. Advances in Plants and Agriculture Research, 1(3):00016 (http://dx.doi.org/10.15406/apar.2014 .01.00016).
  • Rockström, J., Williams, J., Daily, G., Noble, A., Matthews, N., Gordon, L., Wetterstrand, H., DeClerck, F., Shah, M., Steduto, P., de Fraiture, C., Hatibu, N., Unver, O., Bird, J., Sibanda, L., Smith, J. 2017. Sustainable intensification of agriculture for human prosperity and global sustainability. Ambio, 46(1):4-17 (doi:10.1007/ s13280-016-0793-6).
  • Sachdev, S., Ansari, S.A., Ansari, M.I., Fujita, M., Hasanuzzaman, M. 2021. Abiotic stress and reactive oxygen species:generation, signaling, and defense mechanisms. Antioxidants, 10(2):277 (https://doi.org/10.3390/antiox10020277).
  • Semidaa, W. M., Abdelsattar Abdelkhalika, Radyb, M.O.A., Mareyc, R.A., El-Mageedd, T.A.A., 2020. Exogenously applied proline enhances growth and productivity of drought stressed onion by improving photosynthetic efficiency, water use efficiency and up-regulating osmoprotectants. Scientia Horticulturae, 272. (doi:10.1016/j.scienta.2020.109580).
  • Seymen, M. 2021. Comparative analysis of the relationship between morphological, physiological, and biochemical properties in spinach (Spinacea oleracea L.) under deficit irrigation conditions. Turkish Journal of Agriculture and Forestry, 45(1):55-67.
  • Sharma, S., Villamor, J.G., Verslues, P.E. 2011. Essential role of tissue-specific proline synthesis and catabolism in growth and redox balance at low water potential. Plant physiology 157:292-304.
  • Soltanpour, P.N., Workman, S.M. 1981. Use of Inductively-Coupled Plasma Spectroscopy for the Simultaneous Determination of Macro and Micro Nutrients in NH₄HCO₃-DTPA Extracts of Soils. In Barnes R.M. (ed). Developments in Atomic Plasma Analysis, USA, pp:673-680 (https://doi.org/10.2136/sssaj1979.03615995004300010013x).
  • Szabados, L., Savouré, A. 2010. Proline:a multifunctional amino acid. Trends in plant science 15:89-97.
  • Teklić, T., Parađiković, N., Špoljarević, M., Zeljković, S., Lončarić, Z., Lisjak, M. 2021. Linking abiotic stress, plant metabolites, biostimulants and functional food. Annals of Applied Biology, 178(2):169-191 (https://doi. org/10.1111/aab.12651).
  • Ye, Q., Yang, X., Dai, S., Chen, G., Li, Y., Zhang, C. 2015. Effects of climate change on suitable rice cropping areas, cropping systems and crop water requirements in southern China. Agricultural Water Management 159:35-44 (https://doi.org/10. 1016/j.agwat.2015.05.022).
There are 24 citations in total.

Details

Primary Language Turkish
Subjects Agricultural Engineering (Other)
Journal Section Makaleler
Authors

Abdullah Şamil Şahin This is me

Ömer Burak Tanrıverdi This is me

Musa Seymen

Publication Date December 19, 2022
Submission Date January 1, 2022
Acceptance Date January 31, 2022
Published in Issue Year 2022 Volume: 51 Issue: (Özel Sayı 1) 13. Sebze Tarımı Sempozyumu

Cite

APA Şahin, A. Ş., Tanrıverdi, Ö. B., & Seymen, M. (2022). Sel Baskını Stresi Şartlarında Soğana Uygulanan Glisin Betain ve Prolin Uygulamalarının Besin Elementi İçeriklerine Etkisi. Bahçe, 51((Özel Sayı 1) 13. Sebze Tarımı Sempozyumu), 390-395.
AMA Şahin AŞ, Tanrıverdi ÖB, Seymen M. Sel Baskını Stresi Şartlarında Soğana Uygulanan Glisin Betain ve Prolin Uygulamalarının Besin Elementi İçeriklerine Etkisi. Bahçe. December 2022;51((Özel Sayı 1) 13. Sebze Tarımı Sempozyumu):390-395.
Chicago Şahin, Abdullah Şamil, Ömer Burak Tanrıverdi, and Musa Seymen. “Sel Baskını Stresi Şartlarında Soğana Uygulanan Glisin Betain Ve Prolin Uygulamalarının Besin Elementi İçeriklerine Etkisi”. Bahçe 51, no. (Özel Sayı 1) 13. Sebze Tarımı Sempozyumu (December 2022): 390-95.
EndNote Şahin AŞ, Tanrıverdi ÖB, Seymen M (December 1, 2022) Sel Baskını Stresi Şartlarında Soğana Uygulanan Glisin Betain ve Prolin Uygulamalarının Besin Elementi İçeriklerine Etkisi. Bahçe 51 (Özel Sayı 1) 13. Sebze Tarımı Sempozyumu 390–395.
IEEE A. Ş. Şahin, Ö. B. Tanrıverdi, and M. Seymen, “Sel Baskını Stresi Şartlarında Soğana Uygulanan Glisin Betain ve Prolin Uygulamalarının Besin Elementi İçeriklerine Etkisi”, Bahçe, vol. 51, no. (Özel Sayı 1) 13. Sebze Tarımı Sempozyumu, pp. 390–395, 2022.
ISNAD Şahin, Abdullah Şamil et al. “Sel Baskını Stresi Şartlarında Soğana Uygulanan Glisin Betain Ve Prolin Uygulamalarının Besin Elementi İçeriklerine Etkisi”. Bahçe 51/(Özel Sayı 1) 13. Sebze Tarımı Sempozyumu (December2022), 390-395.
JAMA Şahin AŞ, Tanrıverdi ÖB, Seymen M. Sel Baskını Stresi Şartlarında Soğana Uygulanan Glisin Betain ve Prolin Uygulamalarının Besin Elementi İçeriklerine Etkisi. Bahçe. 2022;51:390–395.
MLA Şahin, Abdullah Şamil et al. “Sel Baskını Stresi Şartlarında Soğana Uygulanan Glisin Betain Ve Prolin Uygulamalarının Besin Elementi İçeriklerine Etkisi”. Bahçe, vol. 51, no. (Özel Sayı 1) 13. Sebze Tarımı Sempozyumu, 2022, pp. 390-5.
Vancouver Şahin AŞ, Tanrıverdi ÖB, Seymen M. Sel Baskını Stresi Şartlarında Soğana Uygulanan Glisin Betain ve Prolin Uygulamalarının Besin Elementi İçeriklerine Etkisi. Bahçe. 2022;51((Özel Sayı 1) 13. Sebze Tarımı Sempozyumu):390-5.

BAHCE Journal
bahcejournal@gmail.com
https://bahcejournal.org
Atatürk Horticultural Central Research Institute, Yalova 77100 TÜRKİYE
X (Twitter)LinkedinFacebookInstagram