BibTex RIS Cite

BAJECE_Vol2_No3

Year 2014, Volume: 2 Issue: 3, 91 - 166, 01.09.2014

Abstract

ed and indexed in Copernicus, Index Google Scholarship, the PSCR, DOAJ, Research Bible, Indian Open Access Journals (OAJ), Institutional Repositories (IR), Journal TOCs, J-Gate (Informatics India), Ulrich’s, ResearchGate, International Society of Universal Research in Sciences, DRJI, EyeSource

References

  • Z. V. Kolpashchikova, E. V. Shcherbakova, N. S. Kostyukov, “Polarization processes in electrotechnical porcelain within a wide frequency range”, Glass and Ceram., vol. 60, no.11-12, pp.370-373, 2003.
  • L.U ANIH, “Characterization of Locally Sourced Kaolin-Feldspar- Quartz Triaxial Porcelain for Insulation Applications”, Electric Power Engineering Conference (EPEC), June 2005.
  • J.M.Amigo, J.V. Clause, E. Vicente, J. M. Delgado, M. M. Revento, L. E. Ochando, T. Debaerdemaeker, F. Martı, “X-ray powder diffraction phase analysis and thermomechanical properties of silica and alumina porcelains”, J. of the Eur. Ceram. Soc., vol. 24, no.1, pp.75-81, 2004.
  • S.P. Chaudhuri, P. Sarkar, A.K. Chakraborty, “Electrical resistivity of porcelain in relation to constitution”, Ceram. Inte. vol. 25, no.1 pp.91- 99, 1999.
  • A. S. Demirkiran, R. Artir, E. Avci, “Electrical resistivity of porcelain bodies with natural zeolite addition”, Ceram. Inter. vol. 36, no.3, pp.917- 921, 2010.
  • S.J. Hwang, Y.J. Kim, H.S. Kim, “La2O–BO–TiO2 Glass/BaO– Nd2O3–TiO ceramic for high quality factor low temperature co-fired ceramic dielectric”, J Electro. Ceram., vol. 18, no.1-2, pp.121-128, 2007.
  • V. Tmovcova, I. Fura, F. Hanic,” Influence of technological texture on electrical properties of industrial ceramics”, J. of Phys. and Chem. of Sol. vol.68, no.5-6, pp.1135-1139, 2007. [8] Ying-Chieh
  • Lee, “Dielectric Properties and Reliability of
  • Zn0.95Mg0.05TiO3+0.25TiO2 MLCCs with Different Pd/Ag Ratios of
  • Electrodes”, Int. J. Appl. Ceram. Technol.,vol. 7, no.1, pp.71-80, 2010.
  • H. M. El-Malah, N. A. Hegab, Studies on a.c. properties of Ca1–xSrxTiO3 perovskites, J. Mater. Sci. vol.42, no.1, pp.332-336,
  • G.B. Kumar, K. Sivaiah, S. Buddhudu, “Synthesis and characterization of ZnWO4 ceramic powder”, Ceram. Inter. vol.36, no.1, pp.199-202, 2010.
  • S.Kitouni, A. Harabi,” Sintering and mechanical properties of porcelains prepared from Algerian raw materials”, Cerâmica, vol.57, no.344, pp.453-460, 2011.
  • V.P. Il’ina, “Feldspar material from Karela for electrical engeneering”, Glass and Ceram., vol.61, no.5-6, pp.195-197, 2004
  • R.A. Islam, Y.C. Chana, M. F. Islam, “Structure–property relationship in high-tension ceramic insulator fired at high temperature”, Mat. Sci. and Eng. vol.B106, no.2, pp.132-140, 2004.
  • V. Viswabaskaran, F.D. Gnanam, M. Balasubramanian, “Mullite from clay–reactive alumina for insulating substrate application”, Applied Clay Sci. vol.25, no.1-2, pp.29-35, 2004.
  • K. Ogata, Modern Control Engineering, Prentice-Hall, Englewood Cliffs, NJ, 1970.
  • J. Zheng, P. Guo, and J.D. Wang, “STFC-self-tuning fuzzy controller,” in Proc. IEEE Conf. on Systems, Man and Cybernetics, Chicago, 1992.
  • Y.C. Kim, L.H. Keel, and S.P. Bhattacharyya, “Transient response control via characteristic ratio assignment,” IEEE Trans. on Automatic Control, vol. 48, pp. 2238-2244, 2003.
  • A.S. Hauksdóttir, “Analytic expression of transfer function responses and choice of numerator coefficients (Zeros),” IEEE Trans. on Automatic Control, vol. 41, pp. 1482–1488, 1996.
  • S. Jung, and R.C. Dorf, “Novel analytic technique for PID and PIDA controller design,” in Proc. 13th IFAC World Congress, San Francisco, USA, 1996.
  • G.C. Goodwin, A.R. Woodyatt, R.H. Middleton, and J. Shim, “Fundamental limitations due to jw-axis zeros in SISO systems,” Automatica, vol. 35, pp. 857-863, 1999.
  • B.A. Leon de la Barra, “On undershoot in SISO systems,” IEEE Trans. on Automatic Control, vol. 39, pp. 578-581, 1994.
  • D. Graham, and R.C. Lathrop, “The synthesis of “optimum” transient response: criteria and standard forms,” AIEE Transactions, vol. 72, pp. 273-288, 1953.
  • G.F. Franklin, and J.D. Powell, and A. Emami-Naeini, “Feedback control of dynamic systems,” Addison-Wesley, 1994.
  • C. Kessler, “Ein beitrag zur theorie mehrschleifiger regelungen,” Regelungstechnik, vol. 8, pp. 261-266, 1960.
  • N.K. Sinha, Control Systems, 2nd ed. John Wiley & Sons Inc, 1994.
  • M. Zhuang, and D.P. Atherton, “Automatic tuning of optimum PID
  • controllers,” IEE Proc. D, vol. 140, pp. 216-224, 1993
  • P. Naslin, Essentials of Optimal Control, Boston Technical Publishers, . Massachusetts, 1969.
  • Y.C. Kim, L.H. Keel, and S.P. Bhattacharyya, “Transient response control via characteristic ratio assignment and pulsatance assignment,” in Proc. 21th American Control Conference, Anchorage, 2002.
  • S. Manabe, “Coefficient diagram method,” in Proc. 14th IFAC Symposium on Automatic Control in Aerospace, Seoul, 1998.
  • S.E. Hamamci, “A robust polynomial-based control for stable processes with time delay,” Electrical Engineering, vol. 87, pp. 163–172, 2005.
  • T. Liu, W. Zhang, and D. Gu, “Analytical design of two-degree-of- freedom control scheme for open-loop unstable processes with time delay,” Journal of Process Control, vol. 15, pp. 559–572, 2005.
  • A.S. Rao, and M. Chidambaram, “Enhanced two-degrees-of-freedom control strategy for second-order unstable processes with time delay,” Ind. Eng. Chem. Res., vol. 45, pp. 3604-3614, 2006.
  • S. Manabe, and Y.C. Kim, “Recent development of Coefficient Diagram Method,” in Proc. 3rd Asian Control Conference, Shanghai, 2000.
  • M. Araki, and H. Taguchi, “Two-degree-of-freedom PID controllers,” Int. J. of Control, Automation, and Systems, vol. 1, pp. 401-411, 2003.
  • I. Kaya, and D.P. Atherton, “Exact parameter estimation from relay autotuning under static load disturbances,” in Proc. 20th American Control Conference, Arlington, 2001.
  • A. Visioli, “Time-optimal plug&control for integrating and FOPDT processes,” Journal of Process Control, vol. 13, pp. 195–202, 2003.
  • S. Majhi, and D.P. Atherton, “Online tuning of controllers for an unstable FOPDT process,” IEE Proc.- Control Theory Appl., vol. 147, pp. 421-427, 2000.
  • A. Visioli, “Optimal tuning of PID controllers for integral and unstable processes,” IEE Proc.-Control Theory Appl., vol. 148, pp. 180–184, 2001.
  • R.P. Sree, M.N. Srinivas, and M. Chidambaram, “A simple method of tuning PID controllers for stable and unstable FOPDT systems,” Comput. Chem. Eng., vol. 28, pp. 2201–2218, 2004.
  • L. Wang, and W.R. Cluett, “Tuning PID controllers for integrating processes,” IEE Proc.- Control Theory Appl., vol. 144, pp. 385-392, 1997.
  • I. Kaya, “Tuning PI controllers for stable processes with specifications on gain and phase margins,” ISA Transactions, vol. 43, pp. 297-304, 2004.
  • W.R. Cluett, and L. Wang, “New tuning rules for PID control,” Pulp and Paper Canada, vol. 3, pp. 52-55, 1997.
  • Y.G. Wang, and H.H. Shao, “PID autotuner based on gain- and phase- margin specifications,” Ind. Eng. Chem. Res., vol. 38, pp. 3007–3012, 1998. BIOGRAPHY
  • T.T. LieGuojie, C. B. Soh, G.H. Yang, Design of state-feedback decentralized nonlinear Hinf controllers in power systems , Electrical Power & Energy Systems, Vol.24, 2002, pp.601-610.
  • A. D. Falehi, A. Dankoob, S. Amirkhan, H. Mehrjardi, Coordinated Design of STATCOM-Based Damping Controller and Dual-Input PSS to Improve Transient Stability of Power System, International Review of Automatic Control, 2011, pp.1308-1317.
  • A.Y. Sivaramakrishnan, M. V. Hariharan, M. C. Srisailam, Design of a variable-structure load controller using pole assignment technique, Int. J. Contr.,40, 1984, 487-498.
  • G. Shahgholian, A. Rajabi, B. Karimi, Analysis and Design of PSS for Multi-Machine Power System Based on Sliding Mode Control Theory, International Review of Automatic Control, 2010, pp.2241-2250.
  • A. Ghosh, G. Ledwich, O.P. Malik, G.S. Hope, Power system stabilizer based on adaptive control techniques, IEEE Trans. PAS 103, 1984, pp.1983–1989.
  • S.J. Chang, Y.S. Chow, O.P. Malik, G.S. Hope, An adaptive synchronous machine stabilizer, IEEE Trans. PWRS 1, 1986, pp.101– 109.
  • A. Pierre, A perspective on adaptive control of power systems, IEEE Trans. PWRS, Vol.2, 1987, pp.387–396.
  • N.H. Zadeh, A. Kalam, A direct adaptive fuzzy power system stabilizer, IEEE Transaction on Energy Conversion, 14, 1999.
  • N.H. Zadeh, A. Kalam, An indirect adaptive fuzzy-logic power system stabiliser, Electrical power & Energy systems, 24, 2002, pp.837-842.
  • I. Ngamroo, Augmentation of Electrolyzer Control Effect by PSS for Microgrid Stabilization using PID-based Mixed H2/H∞ Control, International Review of Automatic Control, 2011, 3073-3080.
  • S.S. Lee and J.K. Park, Design of power system stabilizer using observer / sliding mode, observer/sliding mode model following and H∞ / sliding mode controllers for small signal stability study, Electrical Power & Energy Systems, Vol.20, No.8, 1998, pp.543-553.
  • T. Hussein, M.S. Saad, A.L. Elshafei, A. Bahgat, Damping inter-area modes of oscillation using an adaptive fuzzy power system stabilizer, Electric Power Systems Research, Vol.80, 2010, pp.1428-1436.
  • G.H. Hwang, D.W. Kim, J.H. Lee, Y.J. An, Design of Fuzzy Power System Stabilizer Using Adaptive Evolutionary Algorithm, Engineering Applications of Artificial Intelligence, Vol.21, 2008, pp.86-96.
  • E. Nechadi, M. N. Harmas, N. Essounbouli, A. Hamzaoui, Adaptive Fuzzy Sliding Mode Power System Stabilizer Using Nussbaum gain, International Journal of Automation and Computing, Vol.10, No.4, August 2013, pp.281-287.
  • H. M. Soliman, A.L. Elshafei, F. Bendary, W. Mansour, LMI Static output-feedback Design of Fuzzy Power System Stabilizers, Expert Systems with Applications, Vol.36, 2009, pp.6817-6825.
  • H.M. SoIiman, A.L. Eshafei, A.A. Shaltout, M.F. Mors, Robust Power System Stabiliser, IEE Proc-Elec. Power Appl., 147, 2000, pp.285-291. BIOGRAPHY [1]
  • M. Abdel-Salam and E. K. Stanek, “Optimizing field stress of
  • highvoltageinsulators,” IEEE Trans. Electr.Insul., vol. 22, no. 1, pp. 47–56,Feb. 1987.
  • M. Abdel-Salam and E. K. Stanek, “Field optimization of high- voltageinsulators,” IEEE Trans. Ind. Appl., vol. IA-22, no. 4, pp. 594– 601, Jul.1986.
  • Z. Stih, “High voltage insulating system design by application of contour electrodeand Elect.Insul.,vol. 21, no. 4, pp. 579–584, Aug. 1986.
  • optimization,” IEEE Trans.
  • H. Singer, H. Steinbigler, and P. Weiss, “A charge simulation method for the calculation of high voltage fields,” IEEE Trans. Power App.Syst., vol. 126, no. 1, pp. 1660–1668, Feb. 1974.
  • P. K. Mukherjee and C. K. Roy, “Computation of fields in and around insulators by fictitious point charges,” IEEE Trans. Electr. Insul., vol.EI-13, no. 1, pp. 24–31, Feb. 1978.
  • N. H. Malik, “A review of the charge simulation method and its applications,” IEEE Trans. Elect. Insul., vol. 24, no. 1, pp. 3–19, Feb. 1989.
  • H. El-Kishky and R. S. Gorur, “Electric potential and field computation along ac HV insulators,” IEEE Trans. Dielectr.Elect.Insul., vol. 1, no. 6, pp. 982–990, Dec. 1994.
  • V. Cingoski, K. Kaneda, H. Yamashita, and N. Kowata, “Inverse shape optimization using dynamically adjustable genetic algorithms,” IEEETrans. Energy Convers., vol. 14, no. 3, pp. 661–666, Sep. 1999.
  • R. Hinterding, H. Gieleski, and T. C. Peachey, “The nature of mutation in genetic algorithm,” in Proc. 6th Int. Conf. Genetic Algorithms, Jul.1995, pp. 65–72.
  • W. Chen, H. Yang, and H. Huang, “Contour Optimization of Suspension Insulators Using Dynamically Adjustable Genetic Algorithms,” IEEE Trans. Power Delivery, vol. 25, no. 3, pp. 1220– 1228, Jul. 2010.
  • O. W. Andersen, “Finite element solution of complex potential electric fields,” IEEE Trans. Power App. Syst., vol. PAS-96, no. 4, pp.1156– 1161, Jul./Aug. 1977.
  • MATLAB PDE Toolbox User’s Guide, Version 7.6, 2008.
  • S.H. HosseinNia, I. Tejado, B.M. Vinagre, “Robust Fractional order PI Controller for Switching Systems,” in: Proc. the 5th Symp. on. Fractional Differentiation and its Applications (FDA'2012), Hohai University, 2012.
  • Y.I. Neimark, “D-decomposition of the space of quasi-polynomials (on the stability of linearized distributive systems),” American Mathematical Society Translations, vol. 102, pp. 95-131, 1973.
  • D. Liberzon, ve A.S. Morse, “Basic problems in stability and design of switched systems,” IEEE Control Systems Magazine, vol. 19, pp. 59–70,
  • S.H. HosseinNia, I. Tejado, B.M. Vinagre, “A method for the design of robust controllers ensuring the quadratic stability for switching systems,” J. of Vibration and Control, vol. 20, no. 7, pp. 1085-1098, 2014.
  • I. Podlubny, “Fractional Order Systems and PID Controllers,” IEEE  Trans. on Automatic Control, vol. 44, no. 1, pp. 208-214, 1999.
  • J. Hwang, J.-F. Leu, and S.-Y. Tsay, “A note on time-domain simulation of feedback fractional-order systems,” IEEE Trans. on Automatic Control, vol. 47, no. 4, pp. 625-631, 2002.
  • J. Ackermann, D. Kaesbauer, “Design of robust PID controllers,” in: Proc. the European Control Conference, pp. 522-527, 2001.
  • M.-T. Ho, A. Datta, and S.P. Bhattacharyya, “A new approach to feedback stabilization,” in: Proc. The 35th Conf. on Decision and Control, Kobe, Japan, 1996.
  • İ. Işık, and S.E. Hamamci, "Anahtarlamalı Sistemleri Kararlı Yapan PI Kontrolör Setinin Hesabı," in: Proc. the TOK 2013 Turkish Automatic Control National Meeting, Malatya, Turkey, 2013, (in Turkish).
  • S.Şeker, E.Ayaz, (2003). A Reliability Model for Induction Motor Ball Bearing Degradation. Electric Power Components & Systems. 31 (7), pp.639-652.
  • S.Şeker, E.Ayaz, (2002). A Study on Condition Monitoring for Induction Motors Under the Accelerated Aging Processes. IEEE Power Engineering Review. 22 (7), pp.35-37.
  • S.Şeker, E.Ayaz, (2003). Feature extraction related to bearing damage in electric motors by wavelet analysis. Journal of the Franklin Institute. 340 (2), pp.125-134.
  • E.Ayaz, S.Şeker, E.Türkcan, B.Barutçu, Combination Of Spectral And Multi-Resolution Wavelet Analysis For Fault Detection In Electric Motors. ELECO’2003, Third International Conference on Electrical and Electronics Engineering. Bursa, Turkey, 3-7 December 2003, pp.94-98.
  • E.Ayaz, A.Öztürk, S.Şeker, B.R.Upadhyaya, (2009). Fault detection based on continuous wavelet transform and sensor fusion in electric motors. COMPEL: The International Journal for Computation and Mathematics in Electrical and Electronic Engineering. 28 (2), pp.454- 470.
  • E.Ayaz, (2014). Autoregressive modeling approach of vibration data for bearing fault diagnosis in electric motors. Journal of Vibroengineering. 16 (5), pp.2130-2138.
  • C.C.Wang, Y.Kang, P.C.Shen, Y.P.Chang, Y.L.Chung, (2010). Applications of fault diagnosis in rotating machinery by using time series analysis with neural network. Expert Systems with Applications. (37), pp.1696–1702.
  • M.S.Yilmaz, E.Ayaz, Adaptive Neuro-Fuzzy Inference System for Bearing Fault Detection in Induction Motors Using Temperature, Current, Vibation Data. EUROCON 2009-International IEEE Conference. Saint-Petersburg, Russia, May 18-23, 2009.
  • N.T.Nguyen, H.H.Lee, Bearing fault diagnosis using adaptive network based fuzzy inference system. International Symposium on Electrical & Electronics Engineering. Vietnam, 24- 25 October 2007.
  • M.S.Ballal, Z.J.Khan, H.M.Suryawanshi, R.L.Sonolikar, (2007). Adaptive neural fuzzy inference system for the detection of inter-turn insulation and bearing wear faults in induction motor. IEEE Transactions on Industrial Electronics. 54 (1).
  • E.Ayaz, M.Uçar, S.Şeker, B.R.Upadhyaya, (2009). Neuro-detector based on coherence analysis for stator insulation in electric motors. Electric Power Components and Systems. 37 (5), pp.533-546.
  • V.S.Vaseghi, (1996) Advanced signal processing and digital noise reduction, New York: John Wiley.
  • T.K.Moon, W.C.Stirling, (1999) Mathematical Methods and Algorithms for Signal Processing, Prentice Hall.
  • S.Qian, D.Chen, (1996) The joint Time -Frequency Analysis-Methods and Applications. Englewood Cliffs, NJ: Prentice-Hall.
  • I. Daubechies, (1990). The wavelet transform, time-frequency localization and signal analysis. IEEE Transactions on Information Theory 36 (5) pp.961-1005.
  • A.Papoulis, (1987) Probability, Random Variables and Stochastic Processes. McGraw Hill International Edition, 5th printing, Singapore.
  • M.H.Hayes, (1996) Statistical Digital Signal Processing and Modeling. John Wiley&Sons, Inc.
  • L.H.Tsoukalas, R.E.Uhrig, (1997) Fuzzy and neural approaches in engineering. New York: Wiley.
  • J.S.R.Jang, (1993). Adaptive-network-based fuzzy inference system. IEEE Transactions on Systems, Man, and Cybernetics 23 (3).

Year 2014, Volume: 2 Issue: 3, 91 - 166, 01.09.2014

Abstract

References

  • Z. V. Kolpashchikova, E. V. Shcherbakova, N. S. Kostyukov, “Polarization processes in electrotechnical porcelain within a wide frequency range”, Glass and Ceram., vol. 60, no.11-12, pp.370-373, 2003.
  • L.U ANIH, “Characterization of Locally Sourced Kaolin-Feldspar- Quartz Triaxial Porcelain for Insulation Applications”, Electric Power Engineering Conference (EPEC), June 2005.
  • J.M.Amigo, J.V. Clause, E. Vicente, J. M. Delgado, M. M. Revento, L. E. Ochando, T. Debaerdemaeker, F. Martı, “X-ray powder diffraction phase analysis and thermomechanical properties of silica and alumina porcelains”, J. of the Eur. Ceram. Soc., vol. 24, no.1, pp.75-81, 2004.
  • S.P. Chaudhuri, P. Sarkar, A.K. Chakraborty, “Electrical resistivity of porcelain in relation to constitution”, Ceram. Inte. vol. 25, no.1 pp.91- 99, 1999.
  • A. S. Demirkiran, R. Artir, E. Avci, “Electrical resistivity of porcelain bodies with natural zeolite addition”, Ceram. Inter. vol. 36, no.3, pp.917- 921, 2010.
  • S.J. Hwang, Y.J. Kim, H.S. Kim, “La2O–BO–TiO2 Glass/BaO– Nd2O3–TiO ceramic for high quality factor low temperature co-fired ceramic dielectric”, J Electro. Ceram., vol. 18, no.1-2, pp.121-128, 2007.
  • V. Tmovcova, I. Fura, F. Hanic,” Influence of technological texture on electrical properties of industrial ceramics”, J. of Phys. and Chem. of Sol. vol.68, no.5-6, pp.1135-1139, 2007. [8] Ying-Chieh
  • Lee, “Dielectric Properties and Reliability of
  • Zn0.95Mg0.05TiO3+0.25TiO2 MLCCs with Different Pd/Ag Ratios of
  • Electrodes”, Int. J. Appl. Ceram. Technol.,vol. 7, no.1, pp.71-80, 2010.
  • H. M. El-Malah, N. A. Hegab, Studies on a.c. properties of Ca1–xSrxTiO3 perovskites, J. Mater. Sci. vol.42, no.1, pp.332-336,
  • G.B. Kumar, K. Sivaiah, S. Buddhudu, “Synthesis and characterization of ZnWO4 ceramic powder”, Ceram. Inter. vol.36, no.1, pp.199-202, 2010.
  • S.Kitouni, A. Harabi,” Sintering and mechanical properties of porcelains prepared from Algerian raw materials”, Cerâmica, vol.57, no.344, pp.453-460, 2011.
  • V.P. Il’ina, “Feldspar material from Karela for electrical engeneering”, Glass and Ceram., vol.61, no.5-6, pp.195-197, 2004
  • R.A. Islam, Y.C. Chana, M. F. Islam, “Structure–property relationship in high-tension ceramic insulator fired at high temperature”, Mat. Sci. and Eng. vol.B106, no.2, pp.132-140, 2004.
  • V. Viswabaskaran, F.D. Gnanam, M. Balasubramanian, “Mullite from clay–reactive alumina for insulating substrate application”, Applied Clay Sci. vol.25, no.1-2, pp.29-35, 2004.
  • K. Ogata, Modern Control Engineering, Prentice-Hall, Englewood Cliffs, NJ, 1970.
  • J. Zheng, P. Guo, and J.D. Wang, “STFC-self-tuning fuzzy controller,” in Proc. IEEE Conf. on Systems, Man and Cybernetics, Chicago, 1992.
  • Y.C. Kim, L.H. Keel, and S.P. Bhattacharyya, “Transient response control via characteristic ratio assignment,” IEEE Trans. on Automatic Control, vol. 48, pp. 2238-2244, 2003.
  • A.S. Hauksdóttir, “Analytic expression of transfer function responses and choice of numerator coefficients (Zeros),” IEEE Trans. on Automatic Control, vol. 41, pp. 1482–1488, 1996.
  • S. Jung, and R.C. Dorf, “Novel analytic technique for PID and PIDA controller design,” in Proc. 13th IFAC World Congress, San Francisco, USA, 1996.
  • G.C. Goodwin, A.R. Woodyatt, R.H. Middleton, and J. Shim, “Fundamental limitations due to jw-axis zeros in SISO systems,” Automatica, vol. 35, pp. 857-863, 1999.
  • B.A. Leon de la Barra, “On undershoot in SISO systems,” IEEE Trans. on Automatic Control, vol. 39, pp. 578-581, 1994.
  • D. Graham, and R.C. Lathrop, “The synthesis of “optimum” transient response: criteria and standard forms,” AIEE Transactions, vol. 72, pp. 273-288, 1953.
  • G.F. Franklin, and J.D. Powell, and A. Emami-Naeini, “Feedback control of dynamic systems,” Addison-Wesley, 1994.
  • C. Kessler, “Ein beitrag zur theorie mehrschleifiger regelungen,” Regelungstechnik, vol. 8, pp. 261-266, 1960.
  • N.K. Sinha, Control Systems, 2nd ed. John Wiley & Sons Inc, 1994.
  • M. Zhuang, and D.P. Atherton, “Automatic tuning of optimum PID
  • controllers,” IEE Proc. D, vol. 140, pp. 216-224, 1993
  • P. Naslin, Essentials of Optimal Control, Boston Technical Publishers, . Massachusetts, 1969.
  • Y.C. Kim, L.H. Keel, and S.P. Bhattacharyya, “Transient response control via characteristic ratio assignment and pulsatance assignment,” in Proc. 21th American Control Conference, Anchorage, 2002.
  • S. Manabe, “Coefficient diagram method,” in Proc. 14th IFAC Symposium on Automatic Control in Aerospace, Seoul, 1998.
  • S.E. Hamamci, “A robust polynomial-based control for stable processes with time delay,” Electrical Engineering, vol. 87, pp. 163–172, 2005.
  • T. Liu, W. Zhang, and D. Gu, “Analytical design of two-degree-of- freedom control scheme for open-loop unstable processes with time delay,” Journal of Process Control, vol. 15, pp. 559–572, 2005.
  • A.S. Rao, and M. Chidambaram, “Enhanced two-degrees-of-freedom control strategy for second-order unstable processes with time delay,” Ind. Eng. Chem. Res., vol. 45, pp. 3604-3614, 2006.
  • S. Manabe, and Y.C. Kim, “Recent development of Coefficient Diagram Method,” in Proc. 3rd Asian Control Conference, Shanghai, 2000.
  • M. Araki, and H. Taguchi, “Two-degree-of-freedom PID controllers,” Int. J. of Control, Automation, and Systems, vol. 1, pp. 401-411, 2003.
  • I. Kaya, and D.P. Atherton, “Exact parameter estimation from relay autotuning under static load disturbances,” in Proc. 20th American Control Conference, Arlington, 2001.
  • A. Visioli, “Time-optimal plug&control for integrating and FOPDT processes,” Journal of Process Control, vol. 13, pp. 195–202, 2003.
  • S. Majhi, and D.P. Atherton, “Online tuning of controllers for an unstable FOPDT process,” IEE Proc.- Control Theory Appl., vol. 147, pp. 421-427, 2000.
  • A. Visioli, “Optimal tuning of PID controllers for integral and unstable processes,” IEE Proc.-Control Theory Appl., vol. 148, pp. 180–184, 2001.
  • R.P. Sree, M.N. Srinivas, and M. Chidambaram, “A simple method of tuning PID controllers for stable and unstable FOPDT systems,” Comput. Chem. Eng., vol. 28, pp. 2201–2218, 2004.
  • L. Wang, and W.R. Cluett, “Tuning PID controllers for integrating processes,” IEE Proc.- Control Theory Appl., vol. 144, pp. 385-392, 1997.
  • I. Kaya, “Tuning PI controllers for stable processes with specifications on gain and phase margins,” ISA Transactions, vol. 43, pp. 297-304, 2004.
  • W.R. Cluett, and L. Wang, “New tuning rules for PID control,” Pulp and Paper Canada, vol. 3, pp. 52-55, 1997.
  • Y.G. Wang, and H.H. Shao, “PID autotuner based on gain- and phase- margin specifications,” Ind. Eng. Chem. Res., vol. 38, pp. 3007–3012, 1998. BIOGRAPHY
  • T.T. LieGuojie, C. B. Soh, G.H. Yang, Design of state-feedback decentralized nonlinear Hinf controllers in power systems , Electrical Power & Energy Systems, Vol.24, 2002, pp.601-610.
  • A. D. Falehi, A. Dankoob, S. Amirkhan, H. Mehrjardi, Coordinated Design of STATCOM-Based Damping Controller and Dual-Input PSS to Improve Transient Stability of Power System, International Review of Automatic Control, 2011, pp.1308-1317.
  • A.Y. Sivaramakrishnan, M. V. Hariharan, M. C. Srisailam, Design of a variable-structure load controller using pole assignment technique, Int. J. Contr.,40, 1984, 487-498.
  • G. Shahgholian, A. Rajabi, B. Karimi, Analysis and Design of PSS for Multi-Machine Power System Based on Sliding Mode Control Theory, International Review of Automatic Control, 2010, pp.2241-2250.
  • A. Ghosh, G. Ledwich, O.P. Malik, G.S. Hope, Power system stabilizer based on adaptive control techniques, IEEE Trans. PAS 103, 1984, pp.1983–1989.
  • S.J. Chang, Y.S. Chow, O.P. Malik, G.S. Hope, An adaptive synchronous machine stabilizer, IEEE Trans. PWRS 1, 1986, pp.101– 109.
  • A. Pierre, A perspective on adaptive control of power systems, IEEE Trans. PWRS, Vol.2, 1987, pp.387–396.
  • N.H. Zadeh, A. Kalam, A direct adaptive fuzzy power system stabilizer, IEEE Transaction on Energy Conversion, 14, 1999.
  • N.H. Zadeh, A. Kalam, An indirect adaptive fuzzy-logic power system stabiliser, Electrical power & Energy systems, 24, 2002, pp.837-842.
  • I. Ngamroo, Augmentation of Electrolyzer Control Effect by PSS for Microgrid Stabilization using PID-based Mixed H2/H∞ Control, International Review of Automatic Control, 2011, 3073-3080.
  • S.S. Lee and J.K. Park, Design of power system stabilizer using observer / sliding mode, observer/sliding mode model following and H∞ / sliding mode controllers for small signal stability study, Electrical Power & Energy Systems, Vol.20, No.8, 1998, pp.543-553.
  • T. Hussein, M.S. Saad, A.L. Elshafei, A. Bahgat, Damping inter-area modes of oscillation using an adaptive fuzzy power system stabilizer, Electric Power Systems Research, Vol.80, 2010, pp.1428-1436.
  • G.H. Hwang, D.W. Kim, J.H. Lee, Y.J. An, Design of Fuzzy Power System Stabilizer Using Adaptive Evolutionary Algorithm, Engineering Applications of Artificial Intelligence, Vol.21, 2008, pp.86-96.
  • E. Nechadi, M. N. Harmas, N. Essounbouli, A. Hamzaoui, Adaptive Fuzzy Sliding Mode Power System Stabilizer Using Nussbaum gain, International Journal of Automation and Computing, Vol.10, No.4, August 2013, pp.281-287.
  • H. M. Soliman, A.L. Elshafei, F. Bendary, W. Mansour, LMI Static output-feedback Design of Fuzzy Power System Stabilizers, Expert Systems with Applications, Vol.36, 2009, pp.6817-6825.
  • H.M. SoIiman, A.L. Eshafei, A.A. Shaltout, M.F. Mors, Robust Power System Stabiliser, IEE Proc-Elec. Power Appl., 147, 2000, pp.285-291. BIOGRAPHY [1]
  • M. Abdel-Salam and E. K. Stanek, “Optimizing field stress of
  • highvoltageinsulators,” IEEE Trans. Electr.Insul., vol. 22, no. 1, pp. 47–56,Feb. 1987.
  • M. Abdel-Salam and E. K. Stanek, “Field optimization of high- voltageinsulators,” IEEE Trans. Ind. Appl., vol. IA-22, no. 4, pp. 594– 601, Jul.1986.
  • Z. Stih, “High voltage insulating system design by application of contour electrodeand Elect.Insul.,vol. 21, no. 4, pp. 579–584, Aug. 1986.
  • optimization,” IEEE Trans.
  • H. Singer, H. Steinbigler, and P. Weiss, “A charge simulation method for the calculation of high voltage fields,” IEEE Trans. Power App.Syst., vol. 126, no. 1, pp. 1660–1668, Feb. 1974.
  • P. K. Mukherjee and C. K. Roy, “Computation of fields in and around insulators by fictitious point charges,” IEEE Trans. Electr. Insul., vol.EI-13, no. 1, pp. 24–31, Feb. 1978.
  • N. H. Malik, “A review of the charge simulation method and its applications,” IEEE Trans. Elect. Insul., vol. 24, no. 1, pp. 3–19, Feb. 1989.
  • H. El-Kishky and R. S. Gorur, “Electric potential and field computation along ac HV insulators,” IEEE Trans. Dielectr.Elect.Insul., vol. 1, no. 6, pp. 982–990, Dec. 1994.
  • V. Cingoski, K. Kaneda, H. Yamashita, and N. Kowata, “Inverse shape optimization using dynamically adjustable genetic algorithms,” IEEETrans. Energy Convers., vol. 14, no. 3, pp. 661–666, Sep. 1999.
  • R. Hinterding, H. Gieleski, and T. C. Peachey, “The nature of mutation in genetic algorithm,” in Proc. 6th Int. Conf. Genetic Algorithms, Jul.1995, pp. 65–72.
  • W. Chen, H. Yang, and H. Huang, “Contour Optimization of Suspension Insulators Using Dynamically Adjustable Genetic Algorithms,” IEEE Trans. Power Delivery, vol. 25, no. 3, pp. 1220– 1228, Jul. 2010.
  • O. W. Andersen, “Finite element solution of complex potential electric fields,” IEEE Trans. Power App. Syst., vol. PAS-96, no. 4, pp.1156– 1161, Jul./Aug. 1977.
  • MATLAB PDE Toolbox User’s Guide, Version 7.6, 2008.
  • S.H. HosseinNia, I. Tejado, B.M. Vinagre, “Robust Fractional order PI Controller for Switching Systems,” in: Proc. the 5th Symp. on. Fractional Differentiation and its Applications (FDA'2012), Hohai University, 2012.
  • Y.I. Neimark, “D-decomposition of the space of quasi-polynomials (on the stability of linearized distributive systems),” American Mathematical Society Translations, vol. 102, pp. 95-131, 1973.
  • D. Liberzon, ve A.S. Morse, “Basic problems in stability and design of switched systems,” IEEE Control Systems Magazine, vol. 19, pp. 59–70,
  • S.H. HosseinNia, I. Tejado, B.M. Vinagre, “A method for the design of robust controllers ensuring the quadratic stability for switching systems,” J. of Vibration and Control, vol. 20, no. 7, pp. 1085-1098, 2014.
  • I. Podlubny, “Fractional Order Systems and PID Controllers,” IEEE  Trans. on Automatic Control, vol. 44, no. 1, pp. 208-214, 1999.
  • J. Hwang, J.-F. Leu, and S.-Y. Tsay, “A note on time-domain simulation of feedback fractional-order systems,” IEEE Trans. on Automatic Control, vol. 47, no. 4, pp. 625-631, 2002.
  • J. Ackermann, D. Kaesbauer, “Design of robust PID controllers,” in: Proc. the European Control Conference, pp. 522-527, 2001.
  • M.-T. Ho, A. Datta, and S.P. Bhattacharyya, “A new approach to feedback stabilization,” in: Proc. The 35th Conf. on Decision and Control, Kobe, Japan, 1996.
  • İ. Işık, and S.E. Hamamci, "Anahtarlamalı Sistemleri Kararlı Yapan PI Kontrolör Setinin Hesabı," in: Proc. the TOK 2013 Turkish Automatic Control National Meeting, Malatya, Turkey, 2013, (in Turkish).
  • S.Şeker, E.Ayaz, (2003). A Reliability Model for Induction Motor Ball Bearing Degradation. Electric Power Components & Systems. 31 (7), pp.639-652.
  • S.Şeker, E.Ayaz, (2002). A Study on Condition Monitoring for Induction Motors Under the Accelerated Aging Processes. IEEE Power Engineering Review. 22 (7), pp.35-37.
  • S.Şeker, E.Ayaz, (2003). Feature extraction related to bearing damage in electric motors by wavelet analysis. Journal of the Franklin Institute. 340 (2), pp.125-134.
  • E.Ayaz, S.Şeker, E.Türkcan, B.Barutçu, Combination Of Spectral And Multi-Resolution Wavelet Analysis For Fault Detection In Electric Motors. ELECO’2003, Third International Conference on Electrical and Electronics Engineering. Bursa, Turkey, 3-7 December 2003, pp.94-98.
  • E.Ayaz, A.Öztürk, S.Şeker, B.R.Upadhyaya, (2009). Fault detection based on continuous wavelet transform and sensor fusion in electric motors. COMPEL: The International Journal for Computation and Mathematics in Electrical and Electronic Engineering. 28 (2), pp.454- 470.
  • E.Ayaz, (2014). Autoregressive modeling approach of vibration data for bearing fault diagnosis in electric motors. Journal of Vibroengineering. 16 (5), pp.2130-2138.
  • C.C.Wang, Y.Kang, P.C.Shen, Y.P.Chang, Y.L.Chung, (2010). Applications of fault diagnosis in rotating machinery by using time series analysis with neural network. Expert Systems with Applications. (37), pp.1696–1702.
  • M.S.Yilmaz, E.Ayaz, Adaptive Neuro-Fuzzy Inference System for Bearing Fault Detection in Induction Motors Using Temperature, Current, Vibation Data. EUROCON 2009-International IEEE Conference. Saint-Petersburg, Russia, May 18-23, 2009.
  • N.T.Nguyen, H.H.Lee, Bearing fault diagnosis using adaptive network based fuzzy inference system. International Symposium on Electrical & Electronics Engineering. Vietnam, 24- 25 October 2007.
  • M.S.Ballal, Z.J.Khan, H.M.Suryawanshi, R.L.Sonolikar, (2007). Adaptive neural fuzzy inference system for the detection of inter-turn insulation and bearing wear faults in induction motor. IEEE Transactions on Industrial Electronics. 54 (1).
  • E.Ayaz, M.Uçar, S.Şeker, B.R.Upadhyaya, (2009). Neuro-detector based on coherence analysis for stator insulation in electric motors. Electric Power Components and Systems. 37 (5), pp.533-546.
  • V.S.Vaseghi, (1996) Advanced signal processing and digital noise reduction, New York: John Wiley.
  • T.K.Moon, W.C.Stirling, (1999) Mathematical Methods and Algorithms for Signal Processing, Prentice Hall.
  • S.Qian, D.Chen, (1996) The joint Time -Frequency Analysis-Methods and Applications. Englewood Cliffs, NJ: Prentice-Hall.
  • I. Daubechies, (1990). The wavelet transform, time-frequency localization and signal analysis. IEEE Transactions on Information Theory 36 (5) pp.961-1005.
  • A.Papoulis, (1987) Probability, Random Variables and Stochastic Processes. McGraw Hill International Edition, 5th printing, Singapore.
  • M.H.Hayes, (1996) Statistical Digital Signal Processing and Modeling. John Wiley&Sons, Inc.
  • L.H.Tsoukalas, R.E.Uhrig, (1997) Fuzzy and neural approaches in engineering. New York: Wiley.
  • J.S.R.Jang, (1993). Adaptive-network-based fuzzy inference system. IEEE Transactions on Systems, Man, and Cybernetics 23 (3).
There are 104 citations in total.

Details

Primary Language English
Authors

Editörden This is me

Publication Date September 1, 2014
Published in Issue Year 2014 Volume: 2 Issue: 3

All articles published by BAJECE are licensed under the Creative Commons Attribution 4.0 International License. This permits anyone to copy, redistribute, remix, transmit and adapt the work provided the original work and source is appropriately cited.Creative Commons Lisansı