Research Article
BibTex RIS Cite

Online Tuning of Two Degrees of Freedom Fractional Order Control Loops

Year 2016, Volume: 4 Issue: 1, 5 - 11, 30.03.2016

Abstract

This paper presents online tuning of Two Degrees of

Freedom control loops with fractional order proportionalintegral-

derivative controller. Since, simultaneous system

objectives can be achieved by these types of control loops it can

be used for challenging control problems. Thus, five various

control loops are reconfigured with fractional order integral and

derivative expressions for real time controller tuning problem.

Seven parameters of the modified control loops are optimized via

stochastic multi parameter divergence optimization algorithm.

The optimization algorithm employs good performance for online

tuning. The performance of the five various structures are

compared using simulation model and real time experimental

study on a prototype flight control simulator.

References

  • [1] I. M. Horowitz, Synthesis of Feedback Systems, Academic Press, New York, The University of Michigan, pp.1-726, 1963. [2] M. Araki, “PID control system with reference feedforward (PID-FF control systems)”, Proc 23rd SICE (Society of Instrument and Control Engineers) Annual Conference, pp.31-32, 1984. [3] M. Araki, H. Taguchi, “Two-degree-of-freedom PID controllers”, International Journal of Control Automation and Systems, Vol.1, pp. 401-411, 2003. [4] T. Nagashio, T. Kida, Y. Hamada, T. Ohtani, “Robust Two-Degrees-of- Freedom Attitude Controller Design and Flight Test Result for Engineering Test Satellite-VIII Spacecraft”, Control Systems Technology, Vol. 22, No.1, pp.157-168, 2014. [5] M. Ajmeri, A. Ali, “Two degree of freedom control scheme for unstable processes with small time delay”, ISA Transactions, Vol.56, pp.308-326, 2015. [6] B. B. Ghosh, B. K. Sarkar, R. Saha, “Realtime performance analysis of different combinations of fuzzy–PID and bias controllers for a two degree of freedom electro hydraulic parallel manipulator”, Robotics and Computer-Integrated Manufacturing, Vol. 34, pp. 62-69, 2014. [7] G. H. Choi, K. Park, J. H. Jung, “An optimal H2 decoupling design for non-square plant systems based on the two-degree-of-freedom standard model", International Journal of Control, Automation and Systems, Vol.7, No.2, pp.193-202, 2009. [8] R. E. Gutierrez, J. M. Rosario, J. A. T. Machado, “Fractional Order Calculus: Basic Concepts and Engineering Applications”, Mathematical Problems in engineering, Hindawi Publishing Corporation, Vol.2010, pp.1-9, 2010. [9] I. Podlubny, Fractional Differential Equations, Mathematics in Science and Engineering, Academic Press, USA, 1999. [10] B. Ross, Fractional Calculus and its Applications, Springer, Verlag, Berlin, New York, 1975. [11] F. Merrikh-Bayat, N. Mirebrahimi, M. R. Khalili, “Discrete-time fractional-order PID controller: Definition, tuning, digital realization and some applications”, International Journal of Control Automation and Systems, Vol.13, No.1, 81-90, 2015. [12] G. Feng, Z. Xiao-ping, “Research on fractional order two-degrees-offreedom flight control technology of unmanned air vehicle”, Computer Science and Information Processing, pp. 807–812, 2012. [13] S. Debbarma, L. C. Saikia, N. Sinha, “Automatic generation control using two degree of freedom fractional order PID controller”, International Journal of Electrical Power & Energy Systems, Vol.58, pp. 120-129, 2014. [14] I. Podlubny, “Fractional order systems and PIλDμ controller”, Proc. IEEE Trans. Automatic Control, Vol. 44, pp. 208–214, 1999. [15] C. Yeroglu, N. Tan, “Note on fractional-order proportional-integraldifferential controller design”, IET Control Theory and Applications, Vol. 5, No.17, pp.1978-1989, 2011. [16] C. Yeroglu, N. Tan, “Classical controller design techniques for fractional order case”, ISA Transactions, Vol.50, No.3, pp.461-472, 2011. [17] R. El-Khazali, “Fractional-order controller design”, Computers & Mathematics with Applications, Vol. 66, No.5, pp.639-646, 2013. [18] L. H. Sheng, Y. Luo, Y. Q. Chen, “A fractional order proportional and derivative (FOPD) motion controller: tuning rule and experiments”, Control Systems Technology, Vol.18, No.2, pp. 516-520, 2010. [19] A. Ates, C. Yeroglu, “Tabu Search Algorithm for Fractional Order PID via Non-linear Multi Objective Function”, International Conference on Fractional Differentiation and Its Applications, Italy, 2014. [20] C. Yeroglu, A. Ates, “A stochastic multi-parameters divergence method for online auto-tuning of fractional order PID controllers”, Journal of the Frankline Institue, Vol.351, No.5, pp.2411-2429, 2014. [21] B. B. Alagoz, A. Ates, C. Yeroglu, “Auto-tuning of PID controller according to fractional order reference model approximation for DC rotor control”, Journal of the Mechatronics, Vol.23. No.7, pp.789-797, 2013. [22] A. Ates C. Yeroglu, B. B. Alagoz, B. Senol, “Tuning of Fractional Order PID with Master Slave Stochastic Multi-Parameter Divergence Optimization Method”, International Conference on Fractional Differentiation and Its Applications, Italy, 2014. [23] D. Song, J. Han, G. Liu, “Active Model-Based Predictive Control and Experimental Investigation on Unmanned Helicopters in Full Flight Envelope”, IEEE Transactions on Control System Technology, Vol.99, pp.1-8, 2012. [24] A. Oustaloup, La commande CRONE: commanderobusted’ordre non entire, Hermès, Paris, 1991. [25] D.Valerio, Ninteger v. 2.3 Fractional Control Toolbox for MATLAB, 2005. [Online]. Available: http://web.ist.utl.pt/~duarte.vale [26] K. Matsuda, H. Fujii, “H∞–optimized wave-absorbing control: analytical and experimental results”, Journal of Guidance Control and Dynamics, Vol.16, No.6, pp.1146–1153, 1993. [27] S. F. Ahammad, S. Purwar, “A nonlinear state observer design for 2-dof twin rotor system using neural networks”, Advances in Computing, International Conference on Control, & Telecommunication Technologies, Trivandrum, Kerala, India, 2009. [28] C. L. Shih, M. L. Chen, J. Y. Wang, “Mathematical Model and Set-point Stabilizing Controller Design of a Twin Rotor MIMO System”, Asian Journal of Control, Vol.10, No.1, pp.107-114, 2008. [29] J. J. Gau, W. K. Liu, C. Y. Tsai, “Intelligent control scheme for twin rotor MIMO system”, IEEE International Conference on Mechatronics, Taipei, Taiwan, 2005. [30] C. Xie, A. Mark, “Turnquist Lane-based evacuation network optimization: An integrated Lagrangian relaxation and tabu search approach”, Transportation Research-Elseiver, Vol.19, No.1, pp.40–63, 2011.
Year 2016, Volume: 4 Issue: 1, 5 - 11, 30.03.2016

Abstract

References

  • [1] I. M. Horowitz, Synthesis of Feedback Systems, Academic Press, New York, The University of Michigan, pp.1-726, 1963. [2] M. Araki, “PID control system with reference feedforward (PID-FF control systems)”, Proc 23rd SICE (Society of Instrument and Control Engineers) Annual Conference, pp.31-32, 1984. [3] M. Araki, H. Taguchi, “Two-degree-of-freedom PID controllers”, International Journal of Control Automation and Systems, Vol.1, pp. 401-411, 2003. [4] T. Nagashio, T. Kida, Y. Hamada, T. Ohtani, “Robust Two-Degrees-of- Freedom Attitude Controller Design and Flight Test Result for Engineering Test Satellite-VIII Spacecraft”, Control Systems Technology, Vol. 22, No.1, pp.157-168, 2014. [5] M. Ajmeri, A. Ali, “Two degree of freedom control scheme for unstable processes with small time delay”, ISA Transactions, Vol.56, pp.308-326, 2015. [6] B. B. Ghosh, B. K. Sarkar, R. Saha, “Realtime performance analysis of different combinations of fuzzy–PID and bias controllers for a two degree of freedom electro hydraulic parallel manipulator”, Robotics and Computer-Integrated Manufacturing, Vol. 34, pp. 62-69, 2014. [7] G. H. Choi, K. Park, J. H. Jung, “An optimal H2 decoupling design for non-square plant systems based on the two-degree-of-freedom standard model", International Journal of Control, Automation and Systems, Vol.7, No.2, pp.193-202, 2009. [8] R. E. Gutierrez, J. M. Rosario, J. A. T. Machado, “Fractional Order Calculus: Basic Concepts and Engineering Applications”, Mathematical Problems in engineering, Hindawi Publishing Corporation, Vol.2010, pp.1-9, 2010. [9] I. Podlubny, Fractional Differential Equations, Mathematics in Science and Engineering, Academic Press, USA, 1999. [10] B. Ross, Fractional Calculus and its Applications, Springer, Verlag, Berlin, New York, 1975. [11] F. Merrikh-Bayat, N. Mirebrahimi, M. R. Khalili, “Discrete-time fractional-order PID controller: Definition, tuning, digital realization and some applications”, International Journal of Control Automation and Systems, Vol.13, No.1, 81-90, 2015. [12] G. Feng, Z. Xiao-ping, “Research on fractional order two-degrees-offreedom flight control technology of unmanned air vehicle”, Computer Science and Information Processing, pp. 807–812, 2012. [13] S. Debbarma, L. C. Saikia, N. Sinha, “Automatic generation control using two degree of freedom fractional order PID controller”, International Journal of Electrical Power & Energy Systems, Vol.58, pp. 120-129, 2014. [14] I. Podlubny, “Fractional order systems and PIλDμ controller”, Proc. IEEE Trans. Automatic Control, Vol. 44, pp. 208–214, 1999. [15] C. Yeroglu, N. Tan, “Note on fractional-order proportional-integraldifferential controller design”, IET Control Theory and Applications, Vol. 5, No.17, pp.1978-1989, 2011. [16] C. Yeroglu, N. Tan, “Classical controller design techniques for fractional order case”, ISA Transactions, Vol.50, No.3, pp.461-472, 2011. [17] R. El-Khazali, “Fractional-order controller design”, Computers & Mathematics with Applications, Vol. 66, No.5, pp.639-646, 2013. [18] L. H. Sheng, Y. Luo, Y. Q. Chen, “A fractional order proportional and derivative (FOPD) motion controller: tuning rule and experiments”, Control Systems Technology, Vol.18, No.2, pp. 516-520, 2010. [19] A. Ates, C. Yeroglu, “Tabu Search Algorithm for Fractional Order PID via Non-linear Multi Objective Function”, International Conference on Fractional Differentiation and Its Applications, Italy, 2014. [20] C. Yeroglu, A. Ates, “A stochastic multi-parameters divergence method for online auto-tuning of fractional order PID controllers”, Journal of the Frankline Institue, Vol.351, No.5, pp.2411-2429, 2014. [21] B. B. Alagoz, A. Ates, C. Yeroglu, “Auto-tuning of PID controller according to fractional order reference model approximation for DC rotor control”, Journal of the Mechatronics, Vol.23. No.7, pp.789-797, 2013. [22] A. Ates C. Yeroglu, B. B. Alagoz, B. Senol, “Tuning of Fractional Order PID with Master Slave Stochastic Multi-Parameter Divergence Optimization Method”, International Conference on Fractional Differentiation and Its Applications, Italy, 2014. [23] D. Song, J. Han, G. Liu, “Active Model-Based Predictive Control and Experimental Investigation on Unmanned Helicopters in Full Flight Envelope”, IEEE Transactions on Control System Technology, Vol.99, pp.1-8, 2012. [24] A. Oustaloup, La commande CRONE: commanderobusted’ordre non entire, Hermès, Paris, 1991. [25] D.Valerio, Ninteger v. 2.3 Fractional Control Toolbox for MATLAB, 2005. [Online]. Available: http://web.ist.utl.pt/~duarte.vale [26] K. Matsuda, H. Fujii, “H∞–optimized wave-absorbing control: analytical and experimental results”, Journal of Guidance Control and Dynamics, Vol.16, No.6, pp.1146–1153, 1993. [27] S. F. Ahammad, S. Purwar, “A nonlinear state observer design for 2-dof twin rotor system using neural networks”, Advances in Computing, International Conference on Control, & Telecommunication Technologies, Trivandrum, Kerala, India, 2009. [28] C. L. Shih, M. L. Chen, J. Y. Wang, “Mathematical Model and Set-point Stabilizing Controller Design of a Twin Rotor MIMO System”, Asian Journal of Control, Vol.10, No.1, pp.107-114, 2008. [29] J. J. Gau, W. K. Liu, C. Y. Tsai, “Intelligent control scheme for twin rotor MIMO system”, IEEE International Conference on Mechatronics, Taipei, Taiwan, 2005. [30] C. Xie, A. Mark, “Turnquist Lane-based evacuation network optimization: An integrated Lagrangian relaxation and tabu search approach”, Transportation Research-Elseiver, Vol.19, No.1, pp.40–63, 2011.
There are 1 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Araştırma Articlessi
Authors

Abdullah Ates

Celaleddin Yeroğlu

Publication Date March 30, 2016
Published in Issue Year 2016 Volume: 4 Issue: 1

Cite

APA Ates, A., & Yeroğlu, C. (2016). Online Tuning of Two Degrees of Freedom Fractional Order Control Loops. Balkan Journal of Electrical and Computer Engineering, 4(1), 5-11.

All articles published by BAJECE are licensed under the Creative Commons Attribution 4.0 International License. This permits anyone to copy, redistribute, remix, transmit and adapt the work provided the original work and source is appropriately cited.Creative Commons Lisansı