Research Article
PDF Zotero Mendeley EndNote BibTex Cite

Year 2017, Volume 5, Issue 2, 40 - 49, 01.09.2017
https://doi.org/10.17694/bajece.334348

Abstract

References

  • [1] Chedid, R. & Rahman, S.(1997). Unit sizing and control of hybrid wind-solar power systems, IEEE Transactions on Energy Conversion, 12(1), pp. 79-85.
  • [2] Bonanno, F., Consoli, A., Raciti, A., Morgana, B. & Nocera, U.(1999). Transient analysis of integrated diesel/wind/photovoltaic generation systems, IEEE Transactions on Energy Conversion, 14(2), pp. 232-238.
  • [3] Habib, M. A., Said, S. A. M., El Hadidy, M. A. & Al-Zaharna, I.(1999).Optimization procedure of a hybrid photovoltaic wind energy system, Energy, 24(11), pp. 919-929.
  • [4] Bayer, H. G. & Christian, L.(1996).A method for the identification of configurations of PV / wind hybrid systems for the reliable supply of small loads, Solar Energy, 57(5), pp. 381-391.
  • [5] Morgan , T. R., Marshall, R. H. & Brinkworth, B. J.(1997).A refined Simulation program for the sizing and optimization of autonomous hybrid energy systems, Solar Energy, 59, pp. 205-215.
  • [6] Rajendra, P. A. & Natarajan, E. (2006).Optimization of integrated photovoltaic–wind power generation systems with battery storage, Energy, 31(12), pp. 1943–1954.
  • [7] Altaş, İ. H. (1993).Control strategies for maximum power tracking and energy utilization of a stand-alone photovoltaic energy system, PhD diss., The University of New Brunswick, Faculty of Engineering, Department of Electrical Engineering, Fredericton, Canada.
  • [8] Diaf, S., Diaf, D., Belhamel, M., Haddadi, M. & Louche, A.(2007).A methodology for optimal sizing of autonomous hybrid PV/wind system, International Journal of Energy Policy, 35(11), pp. 5708-5718.
  • [9] Mittal, R., Sandu, K. S. & Jain, D. K.(2010).Battery energy storage system for variable speed driven pmsg for wind energy conversion system, Power Electronics, Drives and Energy Systems,1, pp. 300-304. [10] El Ali, A., Moubayed, N. & Outbib, R. (2007). Comparison between solar and wind energy in Lebanon, 9th International Conference on Electrical Power Quality and utilization, pp. 1-5.
  • [11] Gagliano, S., Neri, D., Pitrone, N., Savalli, N. & Tina, G. (2009). Low-cost solar radiation sensing transducer for photovoltaic systems, WSEAS Transactions on Environment and Development, 5(2), pp. 119-125.
  • [12] Barsali, S. & Ceraolo, M. (2002). Dynamical Models of Lead-Acid Batteries: Implementation Issues, IEEE Transactions on Energy Conversion, 17(1), pp. 16-23.
  • [13] Moubayed, N., Kouta, J., El-Ali, A., Dernayka, H. & Outbib, R. (2008). Parameter identification of the lead-acid battery model, 33rd IEEE Photovoltaic Specialists Conference, pp. 1-6.
  • [14] Onar, O. C., Uzunoglu , M. & Alam, M. S. (2006). Dynamic modeling, design and simulation of a wind/fuel cell/ultra-capacitor-based hybrid power generation system, Journal of Power Sources, 161(1), pp. 707–722.
  • [15] Thiringer, T. & Linders, J. (1993).Control by variable rotor speed of a fixed-pitch wind turbine operating in a wide speed range, IEEE Transactions on Energy Conversion, 8(3), pp. 520-526.
  • [16] Molina, M. G. & Juanicó, L. E. (2010). Dynamic modelling and control design of advanced photovoltaic solar system for distributed generation applications, Journal of Electrical Engineering: Theory and Application, 1(3), pp. 141-150.
  • [17] Valenciaga, F., Puleston, P. F. & Battaiotto, P. E. (2003). Power control of a solar/wind generation system without wind measurement: a passivity/sliding mode approach, IEEE Transactions on Energy Conversion, 18(4), pp. 501-507.
  • [18] Borowy, B. S. & Salameh, Z. M. (1994). Optimum photovoltaic array size for a hybrid wind/PV system, IEEE Transactions on Energy Conversion, 9(3), pp. 482 – 488.
  • [19] Bogdan, S. B. & Salameh, Z. M. (1996). Methodology for optimally sizing the combination of a battery bank and PV array in a wind/PV hybrid system, IEEE Transactions on Energy Conversion, 11(2), pp. 367-375.
  • [20] Elhadidy, M. A. & Shaahid, S. M. (2005). Decentralized /standalone hybrid Wind–Diesel power systems to meet residential loads of hot coastal regions, Energy Conversion and Management, 46(15-16), pp. 2501-2513.
  • [21] Hajizadeh, A., Tesfahunegn, S. G. & Undeland, T. M. (2011). Intelligent control of hybrid photovoltaic/fuel cell/energy storage power generation system, Journal of Renewable and Sustainable Energy, 3(4), 043112.
  • [22] Garrison, J. B. & Webber, M. E. (2011). An integrated energy storage scheme for a dispatchable solar and wind powered energy system, Journal of Renewable and Sustainable Energy, 043101.
  • [23] Bakić, V., Pezo, M., Stevanović, Ž., Živković, M. & Grubor, B. (2012). Dynamical simulation of PV/wind hybrid energy conversion system, The 24th International Conference on Efficiency, Cost, Optimization, Simulation and Environmental Impact of Energy, 45(1), pp. 324–328.
  • [24] Belfkira, R., Zhang , L. & Barakat, G. (2011). Optimal sizing study of hybrid wind/PV/diesel power generation unit, Solar Energy, 85(1), pp. 100-110.
  • [25] González, I., Ramiro, A., Calderón, M., Calderón, A. J. & González, J. F. (2012). Estimation of the state-of-charge of gel lead-acid batteries and application to the control of a stand-alone wind-solar test-bed with hydrogen support”, International Journal of Hydrogen Energy, 37 (15), pp. 11090-11103.

Simulation and Power Flow Control Using Switching’s Method of Isolated Wind-Solar Hybrid Power Generation System with Battery Storage

Year 2017, Volume 5, Issue 2, 40 - 49, 01.09.2017
https://doi.org/10.17694/bajece.334348

Abstract

In this paper, a battery-supported hybrid wind-solar energy generation system with switching power flow control is presented to supply stable electrical power to two laboratories at the Electric & Electronic Engineering Department. For this purpose, 600W 3-phase permanent magnet synchronous generator (PMSG) based on the wind power generation system (WPGS) and the solar power generation system (SPGS) consisting of 190W 3 pieces mono crystal solar panel were combined to build a 1170W hybrid wind-solar power generation system (HWSPGS). The solar and wind power generation systems were used as the main energy sources while 100 Ah 12V 6 pieces gel jeep cycle accumulator groups were used as the energy storage device to ensure continuity of energy. Also dynamic modeling and switching power flow control of the battery supported the HWSPGS were performed using Matlab/Simulink in this study. Determining the switching positions of the charge control unit according to loading and battery charge situations of the HWSPGS, power flow control between the generation unit and consumer was made in planned manner. When the curves of electrical magnitudes obtained from simulation results were examined, it was determined that no big difference existed in electrical and mechanical magnitudes in parallel to dynamic behavior of the installed hybrid power generation system.

References

  • [1] Chedid, R. & Rahman, S.(1997). Unit sizing and control of hybrid wind-solar power systems, IEEE Transactions on Energy Conversion, 12(1), pp. 79-85.
  • [2] Bonanno, F., Consoli, A., Raciti, A., Morgana, B. & Nocera, U.(1999). Transient analysis of integrated diesel/wind/photovoltaic generation systems, IEEE Transactions on Energy Conversion, 14(2), pp. 232-238.
  • [3] Habib, M. A., Said, S. A. M., El Hadidy, M. A. & Al-Zaharna, I.(1999).Optimization procedure of a hybrid photovoltaic wind energy system, Energy, 24(11), pp. 919-929.
  • [4] Bayer, H. G. & Christian, L.(1996).A method for the identification of configurations of PV / wind hybrid systems for the reliable supply of small loads, Solar Energy, 57(5), pp. 381-391.
  • [5] Morgan , T. R., Marshall, R. H. & Brinkworth, B. J.(1997).A refined Simulation program for the sizing and optimization of autonomous hybrid energy systems, Solar Energy, 59, pp. 205-215.
  • [6] Rajendra, P. A. & Natarajan, E. (2006).Optimization of integrated photovoltaic–wind power generation systems with battery storage, Energy, 31(12), pp. 1943–1954.
  • [7] Altaş, İ. H. (1993).Control strategies for maximum power tracking and energy utilization of a stand-alone photovoltaic energy system, PhD diss., The University of New Brunswick, Faculty of Engineering, Department of Electrical Engineering, Fredericton, Canada.
  • [8] Diaf, S., Diaf, D., Belhamel, M., Haddadi, M. & Louche, A.(2007).A methodology for optimal sizing of autonomous hybrid PV/wind system, International Journal of Energy Policy, 35(11), pp. 5708-5718.
  • [9] Mittal, R., Sandu, K. S. & Jain, D. K.(2010).Battery energy storage system for variable speed driven pmsg for wind energy conversion system, Power Electronics, Drives and Energy Systems,1, pp. 300-304. [10] El Ali, A., Moubayed, N. & Outbib, R. (2007). Comparison between solar and wind energy in Lebanon, 9th International Conference on Electrical Power Quality and utilization, pp. 1-5.
  • [11] Gagliano, S., Neri, D., Pitrone, N., Savalli, N. & Tina, G. (2009). Low-cost solar radiation sensing transducer for photovoltaic systems, WSEAS Transactions on Environment and Development, 5(2), pp. 119-125.
  • [12] Barsali, S. & Ceraolo, M. (2002). Dynamical Models of Lead-Acid Batteries: Implementation Issues, IEEE Transactions on Energy Conversion, 17(1), pp. 16-23.
  • [13] Moubayed, N., Kouta, J., El-Ali, A., Dernayka, H. & Outbib, R. (2008). Parameter identification of the lead-acid battery model, 33rd IEEE Photovoltaic Specialists Conference, pp. 1-6.
  • [14] Onar, O. C., Uzunoglu , M. & Alam, M. S. (2006). Dynamic modeling, design and simulation of a wind/fuel cell/ultra-capacitor-based hybrid power generation system, Journal of Power Sources, 161(1), pp. 707–722.
  • [15] Thiringer, T. & Linders, J. (1993).Control by variable rotor speed of a fixed-pitch wind turbine operating in a wide speed range, IEEE Transactions on Energy Conversion, 8(3), pp. 520-526.
  • [16] Molina, M. G. & Juanicó, L. E. (2010). Dynamic modelling and control design of advanced photovoltaic solar system for distributed generation applications, Journal of Electrical Engineering: Theory and Application, 1(3), pp. 141-150.
  • [17] Valenciaga, F., Puleston, P. F. & Battaiotto, P. E. (2003). Power control of a solar/wind generation system without wind measurement: a passivity/sliding mode approach, IEEE Transactions on Energy Conversion, 18(4), pp. 501-507.
  • [18] Borowy, B. S. & Salameh, Z. M. (1994). Optimum photovoltaic array size for a hybrid wind/PV system, IEEE Transactions on Energy Conversion, 9(3), pp. 482 – 488.
  • [19] Bogdan, S. B. & Salameh, Z. M. (1996). Methodology for optimally sizing the combination of a battery bank and PV array in a wind/PV hybrid system, IEEE Transactions on Energy Conversion, 11(2), pp. 367-375.
  • [20] Elhadidy, M. A. & Shaahid, S. M. (2005). Decentralized /standalone hybrid Wind–Diesel power systems to meet residential loads of hot coastal regions, Energy Conversion and Management, 46(15-16), pp. 2501-2513.
  • [21] Hajizadeh, A., Tesfahunegn, S. G. & Undeland, T. M. (2011). Intelligent control of hybrid photovoltaic/fuel cell/energy storage power generation system, Journal of Renewable and Sustainable Energy, 3(4), 043112.
  • [22] Garrison, J. B. & Webber, M. E. (2011). An integrated energy storage scheme for a dispatchable solar and wind powered energy system, Journal of Renewable and Sustainable Energy, 043101.
  • [23] Bakić, V., Pezo, M., Stevanović, Ž., Živković, M. & Grubor, B. (2012). Dynamical simulation of PV/wind hybrid energy conversion system, The 24th International Conference on Efficiency, Cost, Optimization, Simulation and Environmental Impact of Energy, 45(1), pp. 324–328.
  • [24] Belfkira, R., Zhang , L. & Barakat, G. (2011). Optimal sizing study of hybrid wind/PV/diesel power generation unit, Solar Energy, 85(1), pp. 100-110.
  • [25] González, I., Ramiro, A., Calderón, M., Calderón, A. J. & González, J. F. (2012). Estimation of the state-of-charge of gel lead-acid batteries and application to the control of a stand-alone wind-solar test-bed with hydrogen support”, International Journal of Hydrogen Energy, 37 (15), pp. 11090-11103.

Details

Journal Section Araştırma Articlessi
Authors

Emrah OGUZ This is me
Türkiye


Hasan ÇİMEN
Türkiye


Yüksel OĞUZ
Türkiye

Publication Date September 1, 2017
Published in Issue Year 2017, Volume 5, Issue 2

Cite

Bibtex @research article { bajece334348, journal = {Balkan Journal of Electrical and Computer Engineering}, issn = {2147-284X}, address = {}, publisher = {Balkan Yayın}, year = {2017}, volume = {5}, pages = {40 - 49}, doi = {10.17694/bajece.334348}, title = {Simulation and Power Flow Control Using Switching’s Method of Isolated Wind-Solar Hybrid Power Generation System with Battery Storage}, key = {cite}, author = {Oguz, Emrah and Çimen, Hasan and Oğuz, Yüksel} }
APA Oguz, E. , Çimen, H. & Oğuz, Y. (2017). Simulation and Power Flow Control Using Switching’s Method of Isolated Wind-Solar Hybrid Power Generation System with Battery Storage . Balkan Journal of Electrical and Computer Engineering , 5 (2) , 40-49 . DOI: 10.17694/bajece.334348
MLA Oguz, E. , Çimen, H. , Oğuz, Y. "Simulation and Power Flow Control Using Switching’s Method of Isolated Wind-Solar Hybrid Power Generation System with Battery Storage" . Balkan Journal of Electrical and Computer Engineering 5 (2017 ): 40-49 <https://dergipark.org.tr/en/pub/bajece/issue/36585/334348>
Chicago Oguz, E. , Çimen, H. , Oğuz, Y. "Simulation and Power Flow Control Using Switching’s Method of Isolated Wind-Solar Hybrid Power Generation System with Battery Storage". Balkan Journal of Electrical and Computer Engineering 5 (2017 ): 40-49
RIS TY - JOUR T1 - Simulation and Power Flow Control Using Switching’s Method of Isolated Wind-Solar Hybrid Power Generation System with Battery Storage AU - Emrah Oguz , Hasan Çimen , Yüksel Oğuz Y1 - 2017 PY - 2017 N1 - doi: 10.17694/bajece.334348 DO - 10.17694/bajece.334348 T2 - Balkan Journal of Electrical and Computer Engineering JF - Journal JO - JOR SP - 40 EP - 49 VL - 5 IS - 2 SN - 2147-284X- M3 - doi: 10.17694/bajece.334348 UR - https://doi.org/10.17694/bajece.334348 Y2 - 2017 ER -
EndNote %0 Balkan Journal of Electrical and Computer Engineering Simulation and Power Flow Control Using Switching’s Method of Isolated Wind-Solar Hybrid Power Generation System with Battery Storage %A Emrah Oguz , Hasan Çimen , Yüksel Oğuz %T Simulation and Power Flow Control Using Switching’s Method of Isolated Wind-Solar Hybrid Power Generation System with Battery Storage %D 2017 %J Balkan Journal of Electrical and Computer Engineering %P 2147-284X- %V 5 %N 2 %R doi: 10.17694/bajece.334348 %U 10.17694/bajece.334348
ISNAD Oguz, Emrah , Çimen, Hasan , Oğuz, Yüksel . "Simulation and Power Flow Control Using Switching’s Method of Isolated Wind-Solar Hybrid Power Generation System with Battery Storage". Balkan Journal of Electrical and Computer Engineering 5 / 2 (September 2017): 40-49 . https://doi.org/10.17694/bajece.334348
AMA Oguz E. , Çimen H. , Oğuz Y. Simulation and Power Flow Control Using Switching’s Method of Isolated Wind-Solar Hybrid Power Generation System with Battery Storage. Balkan Journal of Electrical and Computer Engineering. 2017; 5(2): 40-49.
Vancouver Oguz E. , Çimen H. , Oğuz Y. Simulation and Power Flow Control Using Switching’s Method of Isolated Wind-Solar Hybrid Power Generation System with Battery Storage. Balkan Journal of Electrical and Computer Engineering. 2017; 5(2): 40-49.
IEEE E. Oguz , H. Çimen and Y. Oğuz , "Simulation and Power Flow Control Using Switching’s Method of Isolated Wind-Solar Hybrid Power Generation System with Battery Storage", Balkan Journal of Electrical and Computer Engineering, vol. 5, no. 2, pp. 40-49, Sep. 2017, doi:10.17694/bajece.334348

All articles published by BAJECE are licensed under the Creative Commons Attribution 4.0 International License. This permits anyone to copy, redistribute, remix, transmit and adapt the work provided the original work and source is appropriately cited.Creative Commons Lisansı