Research Article
BibTex RIS Cite
Year 2018, Volume: 6 Issue: 1, 53 - 61, 15.02.2018
https://doi.org/10.17694/bajece.402013

Abstract

References

  • [1] G. Meyer, Design and Global Analysis of Spacecraft Attitude Control Systems, NASA TR R-361, March 1971.
  • [2] J. Y. Wen, K. Kreutz-Delgado, The Attitude Control Problem, IEEE Transactions on Automatic Control, vol. 36, no. 10, pp. 1148-1162, 1991.
  • [3] N. A. Chaturverdi, A. K. Sanyal, N. H. McClamroch, Rigid-body Attitude Control, IEEE Control Systems Magazine, vol. 31, no. 3, pp 30-51, 2011.
  • [4] M. D. Shuster, A Survey of Attitude Representations, Journal of Astronautical Sciences, vol. 41, no.4, pp.439-517, 1993.
  • [5] Y. Bai, J. D. Biggs, F. B. Zazzera, N. Cui, Adaptive Attitude Tracking with Active Uncertainty Rejection, Journal of Guidance, Control, and Dynamics, vol. 41, no. 2, pp. 550-558, 2018.
  • [6] D. Thakur, S. Srikant, M. R. Akella, Adaptive attitude-Tracking Control of Spacecraft with Uncertain Time-Varying Inertia Parameters, Journal of Guidance, Control, and Dynamics, vol. 38, no. 1, pp. 41-52, 2015.
  • [7] L. Cao, X. L. Chen, Y. Zhao, Minimum Sliding Mode Error Feedback Control for Fault Tolerant Small Satellite Attitude Control, Advances in Space Research, vol. 53, no.2, pp. 309-324, 2014.
  • [8] A. Sofyali, E. M. Jafarov, Integral Sliding Mode Control of Small Sattelite Attitude Motion by Purely Magnetic Actuation, IFAC Proc. Volumes, vol. 47, no.3, pp. 7947-7953, 2014.
  • [9] Z-G. Zhou, Y-A. Zhang, X-N. Shi, D. Zhou, Robust attitude tracking for Rigid Spacecraft with Prescribed Transient Performance, Int. Journal of Control, vol. 90, Iss. 11, 2017.
  • [10] A. Safa, M. Baradarannia, H. Kharrati, S. Khanmohammadi, Robust Attitude Tracking Control for a Rigid Spacecraft Under Input Delays and Actuator Errors, Int. Journal of Control, vol. 0, Iss. 0, 2017.
  • [11] V. Utkin, J. Guldner, J. Shi, Sliding Mode Control in Electromechanical Systems, PA, Philadelphia, 1999.
  • [12] J. P. Hespanha, D. Liberzon, A. S. Morse, Overcoming The Limitations of Adaptive Control by means of Logic-based Switching, Syst. Contr. Lett., vol. 49, no. 1, pp. 49-65, 2003.
  • [13] P. A. Ioannou, J. Sun, Robust Adaptive Control, NJ, Upper Saddle River: Prentice-Hall, 1996.
  • [14] H. Gui, G. Vukovich, Global Finite-time Attitude Tracking via Quaternion Feedback, Syst, Contr. Lett., vol. 97, pp. 176-183, 2016.
  • [15] S. Wu, G. Radice, Y. Gao, Z. Sun, Quaternion-based Finite-time Control for Spacecraft Attitude Tracking, Acta Astronica, vol. 69, n0. 1, pp. 48-58, 2011.
  • [16] K. Lu, Y. Xia, Finit-time Fault-Tolerant Control for Rigid Spacecraft with Actuator Saturations, IET Control Theory & Appl., vol. 7, n0. 11, pp. 1529-1539, 2013.
  • [17] A. Behal, W. Dixon, D. M. Dawson, B. Xian, Lyapunov-Based Control of Robotic Systems, CRC Press, 2010.
  • [18] M. Wood, W. H. Chen, Attitude Control of Magnetically Actuated Satellites with an uneven Inertia Distribution, Aerospace Science and Technology, vol. 25, pp. 29-39, 2013.
  • [19] B. T. Costic, D. M. Dawson, M. S. d. Queiroz, V. Kapila, Quaternion-Based Adaptive Attitude Tracking Controller Without Velocity Measurements, Journal of Guidance, Control and Dynamics, vol. 24, no. 6, pp. 1214-1222, 2001.
  • [20] B. Wie, Spacecraft Vehicle Dynamics and Control, AIAA, 1998.
  • [21] P. C. Hughes, Spacecraft Attitude Dynamics, Wiley, 1986.
  • [22] W. E. Dixon, A. Behal, D. M. Dawson, S. Nagarkatti, Nonlinear Control of Engineering Systems: A Lyapunov-Based Approach, MA, Boston: Birkhuser, 2003.

Quaternion-Based Robust Satellite Attitude Tracking Control

Year 2018, Volume: 6 Issue: 1, 53 - 61, 15.02.2018
https://doi.org/10.17694/bajece.402013

Abstract

In this paper, a
nonlinear robust quaternion-based controller is developed to address the
three-axis attitude tracking control problem of rigid spacecraft in presence of
parametric uncertainties, unknown external disturbances and sensor noise. As a
first step, a robust controller is designed that compensates parametric
uncertainty and disturbance effects. The robust controller then reformulated to
deal also with sensor noise. Singularity free unit quaternions are used to
represent the attitude of the satellite in three-dimensional space. The
Lyapunov-based stability analysis is applied to prove that a uniformly
ultimately bounded tracking result is achieved. Simulation results are
presented to illustrate the feasibility of the proposed control strategy. 

References

  • [1] G. Meyer, Design and Global Analysis of Spacecraft Attitude Control Systems, NASA TR R-361, March 1971.
  • [2] J. Y. Wen, K. Kreutz-Delgado, The Attitude Control Problem, IEEE Transactions on Automatic Control, vol. 36, no. 10, pp. 1148-1162, 1991.
  • [3] N. A. Chaturverdi, A. K. Sanyal, N. H. McClamroch, Rigid-body Attitude Control, IEEE Control Systems Magazine, vol. 31, no. 3, pp 30-51, 2011.
  • [4] M. D. Shuster, A Survey of Attitude Representations, Journal of Astronautical Sciences, vol. 41, no.4, pp.439-517, 1993.
  • [5] Y. Bai, J. D. Biggs, F. B. Zazzera, N. Cui, Adaptive Attitude Tracking with Active Uncertainty Rejection, Journal of Guidance, Control, and Dynamics, vol. 41, no. 2, pp. 550-558, 2018.
  • [6] D. Thakur, S. Srikant, M. R. Akella, Adaptive attitude-Tracking Control of Spacecraft with Uncertain Time-Varying Inertia Parameters, Journal of Guidance, Control, and Dynamics, vol. 38, no. 1, pp. 41-52, 2015.
  • [7] L. Cao, X. L. Chen, Y. Zhao, Minimum Sliding Mode Error Feedback Control for Fault Tolerant Small Satellite Attitude Control, Advances in Space Research, vol. 53, no.2, pp. 309-324, 2014.
  • [8] A. Sofyali, E. M. Jafarov, Integral Sliding Mode Control of Small Sattelite Attitude Motion by Purely Magnetic Actuation, IFAC Proc. Volumes, vol. 47, no.3, pp. 7947-7953, 2014.
  • [9] Z-G. Zhou, Y-A. Zhang, X-N. Shi, D. Zhou, Robust attitude tracking for Rigid Spacecraft with Prescribed Transient Performance, Int. Journal of Control, vol. 90, Iss. 11, 2017.
  • [10] A. Safa, M. Baradarannia, H. Kharrati, S. Khanmohammadi, Robust Attitude Tracking Control for a Rigid Spacecraft Under Input Delays and Actuator Errors, Int. Journal of Control, vol. 0, Iss. 0, 2017.
  • [11] V. Utkin, J. Guldner, J. Shi, Sliding Mode Control in Electromechanical Systems, PA, Philadelphia, 1999.
  • [12] J. P. Hespanha, D. Liberzon, A. S. Morse, Overcoming The Limitations of Adaptive Control by means of Logic-based Switching, Syst. Contr. Lett., vol. 49, no. 1, pp. 49-65, 2003.
  • [13] P. A. Ioannou, J. Sun, Robust Adaptive Control, NJ, Upper Saddle River: Prentice-Hall, 1996.
  • [14] H. Gui, G. Vukovich, Global Finite-time Attitude Tracking via Quaternion Feedback, Syst, Contr. Lett., vol. 97, pp. 176-183, 2016.
  • [15] S. Wu, G. Radice, Y. Gao, Z. Sun, Quaternion-based Finite-time Control for Spacecraft Attitude Tracking, Acta Astronica, vol. 69, n0. 1, pp. 48-58, 2011.
  • [16] K. Lu, Y. Xia, Finit-time Fault-Tolerant Control for Rigid Spacecraft with Actuator Saturations, IET Control Theory & Appl., vol. 7, n0. 11, pp. 1529-1539, 2013.
  • [17] A. Behal, W. Dixon, D. M. Dawson, B. Xian, Lyapunov-Based Control of Robotic Systems, CRC Press, 2010.
  • [18] M. Wood, W. H. Chen, Attitude Control of Magnetically Actuated Satellites with an uneven Inertia Distribution, Aerospace Science and Technology, vol. 25, pp. 29-39, 2013.
  • [19] B. T. Costic, D. M. Dawson, M. S. d. Queiroz, V. Kapila, Quaternion-Based Adaptive Attitude Tracking Controller Without Velocity Measurements, Journal of Guidance, Control and Dynamics, vol. 24, no. 6, pp. 1214-1222, 2001.
  • [20] B. Wie, Spacecraft Vehicle Dynamics and Control, AIAA, 1998.
  • [21] P. C. Hughes, Spacecraft Attitude Dynamics, Wiley, 1986.
  • [22] W. E. Dixon, A. Behal, D. M. Dawson, S. Nagarkatti, Nonlinear Control of Engineering Systems: A Lyapunov-Based Approach, MA, Boston: Birkhuser, 2003.
There are 22 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Araştırma Articlessi
Authors

JANSET Dasdemir

Publication Date February 15, 2018
Published in Issue Year 2018 Volume: 6 Issue: 1

Cite

APA Dasdemir, J. (2018). Quaternion-Based Robust Satellite Attitude Tracking Control. Balkan Journal of Electrical and Computer Engineering, 6(1), 53-61. https://doi.org/10.17694/bajece.402013

All articles published by BAJECE are licensed under the Creative Commons Attribution 4.0 International License. This permits anyone to copy, redistribute, remix, transmit and adapt the work provided the original work and source is appropriately cited.Creative Commons Lisansı