Research Article
BibTex RIS Cite

Optic Disc Segmentation based on Template Matching and Active Contour Method

Year 2019, Volume: 7 Issue: 1, 56 - 63, 31.01.2019
https://doi.org/10.17694/bajece.470796

Abstract

This paper proposes a
hybrid method that is capable of automatically implementing the Optic Disc (OD)
segmentation. In the hybrid method, two steps were performed. First, the
location of the OD was determined by template matching. Second, the OD location
coordinates obtained in the first stage were given as inputs to the Active
Contour Method applied to complete the OD segmentation. Furthermore, as part of
this study,  Android based a program was
developed to allow physicians the ability to independently access the proposed
hybrid method results from anywhere and to add comments. Thus, the physician
would be able to instantly track the patient. Performance evaluation of the
proposed hybrid method was done separately for both localization and
segmentation. The success of localization was confirmed on the basis of whether
the determined coordinates corresponded to the OD. The segmentation process was
assessed according to the parameters, as derived from a confusion matrix. The
average Dice coefficient obtained for all images was 0.943, while the average
values of accuracy, specificity and sensitivity parameters for all images were
calculated as 0.90, 0.961 and 0.931, respectively. The final results obtained
from the proposed hybrid method were checked by a physician, who observed that
the OD was successfully segmented.

References

  • [1] Z. Yavuz, C. Ikibas, U. Şevik, C. Köse, “Retinal Görüntülerde Optik Diskin Otomatik Olarak Çıkartılması İçin Bir Yöntem”, 5th International Advanced Technologies Symposium, Karabük, Türkiye, 13-15 Mayıs 2009, pp.8.
  • [2] J. Kaur, H.P. Sinha, “Automated localisation of optic disc and macula from fundus images”, International Journal of Advanced Research in Computer Science and Software Engineering, 2(4), 2012, pp.242-249.
  • [3] C. İkibaş, 1Retinal İmgelerde Optik Disk ve Makulanın Tespiti ve Değerlendirilmesi”, PhD thesis, Karadeniz Teknik Üniversitesi, 2012.
  • [4] H. Li, O. Chutatape, “Automatic location of optic disc in retinal images”, International Conference on Image Processing, Thessaloniki, Greece, 2001, pp. 837– 840.
  • [5] A. Osareh, M. Mirmehdi, B. Thomas, R. Markham, “Colour Morphology and Snakes for Optic Disc Localisation”, 16th IEEE Int. Conf. Pattern Recognition, vol.1, 2002, pp. 743–746.
  • [6] A. Ahmed, B. Ritambhar, R. Kaamran, L. Vasudevan, “'Optic Disc and Optic Cup Segmentation Methodologies for Glaucoma Image Detection: A Survey”, Journal of Ophthalmology, Article ID 180972, 2015, pp.28.
  • [7] S. Morales, V. Naranjo J. Angulo M. Alcañiz, “Automatic Detection of Optic Disc Based on PCA and Mathematical Morphology”, IEEE Transactions on Medical Imaging, 32(4), 2013, pp. 786-796.
  • [8] M. Lalonde, M. Beaulieu, L. Gagnon, “Fast and robust optic disc detection using pyramidal decomposition and hausdorff-based template matching”, Medical Imaging, IEEE Transactions, 20(11), 2001, pp. 1193 – 1200.
  • [9] T. Chaichana, S. Yoowattana, et al, “'Edge detection of the optic disc in retinal images based on identification of a round shape”, International Symposium Communications and Information Technologies, 2008, pp. 670 –674.
  • [10] S.A. Tuncer, T. Selçuk M. Parlak, A. Alkan, “'Hybrid approach optic disc segmentation for retinal images”, International Artificial Intelligence and Data Processing Symposium (IDAP), 2017, pp.1-6.
  • [11] N. Muangnak, P. Aimmanee, S. Makhanov, “Automatic optic disc detection in retinal images using hybrid vessel phase portrait analysis”,Med Biol Eng Comput., 56(4), 2018, pp.583-598.
  • [12] R. Fulonga L. Wei, Y. Jinzhua et.al, “Automatic optic disc localization and segmentation in retinal images by a line operator and level sets”, Technology and Health Care, 24(2), 2016, pp. S767-S776.
  • [13] A. Dehghani, H. A. Moghaddam, M. S. Moin, “Optic disc localization in retinal images using histogram matching”, EURASIP Journal on Image and Video Processing, 2012, 2012(19).
  • [14] S. Lu, “Accurate and efficient optic disc detection and segmentation by a circular transformation”, IEEE Transactions on Medical Imaging, 30(12), 2011, pp. 2126–2133.
  • [15] A. Li, Z. Niu, J. Cheng, et.al., “Learning supervised descent directions for optic disc segmentation”, Neurocomputing, 275, 2018, pp.350-357.
  • [16] B. Dai, X. Wu, W. Bu, “Optic disc segmentation based on variational model with multiple energies”, Pattern Recognition, 64, 2017, pp. 226-235.
  • [17] B. Dashtbozorg, A. Mendonça, M.A. Campilho, “Optic disc segmentation using the sliding band filter”, Computers in Biology and Medicine, 56, 2015,pp. 1-12.
  • [18] J. H. Tan, U.R. Acharya, S.V. Bhandary et. al. “Segmentation of optic disc, fovea and retinal vasculature using a single convolutional neural network”, Journal of Computational Science, 20, 2017, pp.70-79.
  • [19] L.A. Muhammed, “Localizing Optic Disc in Retinal Image Automatically with Entropy Based Algorithm”, International Journal of Biomedical Imaging, Article ID 2815163, 2018, pp.7.
  • [20] T.F. Chan, L.A. Vese, “Active contours without edges”, IEEE Transactions on Image Processing, 10(2), 2001.
  • [21] M. Kass, A.Witkin, D. Terzopoulos, “Snakes: active contour models”, International Journal of Computer Vision, 1, 1988, pp.321-331.
  • [22] P.P.R. Filho, P.C. Cortez, A.C. da S. Barros, et.al., “Novel Adaptive Balloon Active Contour Method based on internal force for image segmentation A systematic evaluation on synthetic and real images”, Expert Systems with Applications, 41, 2014, pp.7707–7721.
  • [23] T.F. Chan, L.A. Vese, “Active contours without edges”, IEEE Transactions on Image Processing, 10(2), 2001.
  • [24] E. Isıkcı, D.G. Duru, “Multiple Skleroz Manyetik Rezonans Görüntülerinde Aktif Kontur Modeli ile Lezyon Tespiti”, Tıp Teknolojileri Ulusal Kongresi, Muğla,Türkiye, 2015.
  • [25] S.A. Tuncer, A. Alkan, “Segmentation of thyroid nodules with K-means algorithm on mobile devices”, 16th IEEE International Symposium on Computational Intelligence and Informatics, Budapest, Hungary, 2015, pp. 345-348.
  • [26] A. Alkan, S.A. Tuncer, M. Gunay, “Comparative MR image analysis for thyroid nodule detection and quantification”, Measurement, 47, 2014, pp. 861-868.
  • [27] M. Niemeijer, B. van Ginneken, F. Ter Haar et.al., “Automatic detection of the optic disc, fovea and vascular arch in digital color photographs of the retina”, Proceedings of the British Machine Vision Conference 2005, 109-118.
Year 2019, Volume: 7 Issue: 1, 56 - 63, 31.01.2019
https://doi.org/10.17694/bajece.470796

Abstract

References

  • [1] Z. Yavuz, C. Ikibas, U. Şevik, C. Köse, “Retinal Görüntülerde Optik Diskin Otomatik Olarak Çıkartılması İçin Bir Yöntem”, 5th International Advanced Technologies Symposium, Karabük, Türkiye, 13-15 Mayıs 2009, pp.8.
  • [2] J. Kaur, H.P. Sinha, “Automated localisation of optic disc and macula from fundus images”, International Journal of Advanced Research in Computer Science and Software Engineering, 2(4), 2012, pp.242-249.
  • [3] C. İkibaş, 1Retinal İmgelerde Optik Disk ve Makulanın Tespiti ve Değerlendirilmesi”, PhD thesis, Karadeniz Teknik Üniversitesi, 2012.
  • [4] H. Li, O. Chutatape, “Automatic location of optic disc in retinal images”, International Conference on Image Processing, Thessaloniki, Greece, 2001, pp. 837– 840.
  • [5] A. Osareh, M. Mirmehdi, B. Thomas, R. Markham, “Colour Morphology and Snakes for Optic Disc Localisation”, 16th IEEE Int. Conf. Pattern Recognition, vol.1, 2002, pp. 743–746.
  • [6] A. Ahmed, B. Ritambhar, R. Kaamran, L. Vasudevan, “'Optic Disc and Optic Cup Segmentation Methodologies for Glaucoma Image Detection: A Survey”, Journal of Ophthalmology, Article ID 180972, 2015, pp.28.
  • [7] S. Morales, V. Naranjo J. Angulo M. Alcañiz, “Automatic Detection of Optic Disc Based on PCA and Mathematical Morphology”, IEEE Transactions on Medical Imaging, 32(4), 2013, pp. 786-796.
  • [8] M. Lalonde, M. Beaulieu, L. Gagnon, “Fast and robust optic disc detection using pyramidal decomposition and hausdorff-based template matching”, Medical Imaging, IEEE Transactions, 20(11), 2001, pp. 1193 – 1200.
  • [9] T. Chaichana, S. Yoowattana, et al, “'Edge detection of the optic disc in retinal images based on identification of a round shape”, International Symposium Communications and Information Technologies, 2008, pp. 670 –674.
  • [10] S.A. Tuncer, T. Selçuk M. Parlak, A. Alkan, “'Hybrid approach optic disc segmentation for retinal images”, International Artificial Intelligence and Data Processing Symposium (IDAP), 2017, pp.1-6.
  • [11] N. Muangnak, P. Aimmanee, S. Makhanov, “Automatic optic disc detection in retinal images using hybrid vessel phase portrait analysis”,Med Biol Eng Comput., 56(4), 2018, pp.583-598.
  • [12] R. Fulonga L. Wei, Y. Jinzhua et.al, “Automatic optic disc localization and segmentation in retinal images by a line operator and level sets”, Technology and Health Care, 24(2), 2016, pp. S767-S776.
  • [13] A. Dehghani, H. A. Moghaddam, M. S. Moin, “Optic disc localization in retinal images using histogram matching”, EURASIP Journal on Image and Video Processing, 2012, 2012(19).
  • [14] S. Lu, “Accurate and efficient optic disc detection and segmentation by a circular transformation”, IEEE Transactions on Medical Imaging, 30(12), 2011, pp. 2126–2133.
  • [15] A. Li, Z. Niu, J. Cheng, et.al., “Learning supervised descent directions for optic disc segmentation”, Neurocomputing, 275, 2018, pp.350-357.
  • [16] B. Dai, X. Wu, W. Bu, “Optic disc segmentation based on variational model with multiple energies”, Pattern Recognition, 64, 2017, pp. 226-235.
  • [17] B. Dashtbozorg, A. Mendonça, M.A. Campilho, “Optic disc segmentation using the sliding band filter”, Computers in Biology and Medicine, 56, 2015,pp. 1-12.
  • [18] J. H. Tan, U.R. Acharya, S.V. Bhandary et. al. “Segmentation of optic disc, fovea and retinal vasculature using a single convolutional neural network”, Journal of Computational Science, 20, 2017, pp.70-79.
  • [19] L.A. Muhammed, “Localizing Optic Disc in Retinal Image Automatically with Entropy Based Algorithm”, International Journal of Biomedical Imaging, Article ID 2815163, 2018, pp.7.
  • [20] T.F. Chan, L.A. Vese, “Active contours without edges”, IEEE Transactions on Image Processing, 10(2), 2001.
  • [21] M. Kass, A.Witkin, D. Terzopoulos, “Snakes: active contour models”, International Journal of Computer Vision, 1, 1988, pp.321-331.
  • [22] P.P.R. Filho, P.C. Cortez, A.C. da S. Barros, et.al., “Novel Adaptive Balloon Active Contour Method based on internal force for image segmentation A systematic evaluation on synthetic and real images”, Expert Systems with Applications, 41, 2014, pp.7707–7721.
  • [23] T.F. Chan, L.A. Vese, “Active contours without edges”, IEEE Transactions on Image Processing, 10(2), 2001.
  • [24] E. Isıkcı, D.G. Duru, “Multiple Skleroz Manyetik Rezonans Görüntülerinde Aktif Kontur Modeli ile Lezyon Tespiti”, Tıp Teknolojileri Ulusal Kongresi, Muğla,Türkiye, 2015.
  • [25] S.A. Tuncer, A. Alkan, “Segmentation of thyroid nodules with K-means algorithm on mobile devices”, 16th IEEE International Symposium on Computational Intelligence and Informatics, Budapest, Hungary, 2015, pp. 345-348.
  • [26] A. Alkan, S.A. Tuncer, M. Gunay, “Comparative MR image analysis for thyroid nodule detection and quantification”, Measurement, 47, 2014, pp. 861-868.
  • [27] M. Niemeijer, B. van Ginneken, F. Ter Haar et.al., “Automatic detection of the optic disc, fovea and vascular arch in digital color photographs of the retina”, Proceedings of the British Machine Vision Conference 2005, 109-118.
There are 27 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Araştırma Articlessi
Authors

Seda Arslan Tuncer

Publication Date January 31, 2019
Published in Issue Year 2019 Volume: 7 Issue: 1

Cite

APA Arslan Tuncer, S. (2019). Optic Disc Segmentation based on Template Matching and Active Contour Method. Balkan Journal of Electrical and Computer Engineering, 7(1), 56-63. https://doi.org/10.17694/bajece.470796

All articles published by BAJECE are licensed under the Creative Commons Attribution 4.0 International License. This permits anyone to copy, redistribute, remix, transmit and adapt the work provided the original work and source is appropriately cited.Creative Commons Lisansı