Research Article
BibTex RIS Cite

Broadband Low Reflection Surfaces with Silicon Nano-pillar Square Arrays for Energy Harvesting

Year 2022, Volume: 10 Issue: 1, 30 - 34, 30.01.2022
https://doi.org/10.17694/bajece.943854

Abstract

In this work, optimization of the nanopillar arrays and thin films coated on silicon substrate has been investigated in order to minimize the optical reflection loss from the silicon substrate surface. Nano-pillars's height, incline angle, array properties are systematically optimized. Full field Finite Difference Time Domain method is used to simulate EM fields and calculate the reflection from the modified nanostructured substrate surfaces in 400nm-1100nm spectral range. Optimization recipe is clearly presented and it is not only useful for square arrays but for regular arrays of nano-pillars in general.

Supporting Institution

TUBİTAK ARDEB 1001 project

Project Number

project number 219M280

References

  • [1] P. Campbell, M A. Green. "Light trapping properties of pyramidally textured surfaces." J. Appl. Phys. Vol. 62. No.1, 1987, pp 243-249
  • [2] S. Chattopadhyay, Y.F. Huang, Y.J. Jen, A. Ganguly, K.H. Chen, L.C. Chen. "Anti-reflecting and photonic nanostructures." Mater. Sci. Eng. Rep., Vol.69. No.1-3, 2010, pp 1-35
  • [3] P. Lalanne and G. M. Morris, “Antireflection behavior of silicon subwavelength periodic structures for visible light.” Nanotechnology Vol. 8. No.2, 1997, pp 53–56
  • [4] Y. Kanamori, M. Sasaki, and K. Hane, “Broadband antireflection gratings fabricated upon silicon substrates.” Opt. Lett. Vol.24. No.20, 1999, pp 1422–1424
  • [5] K. Hadobás, S. Kirsch, A. Carl, M. Acet, and E. F. Wassermann, “Reflection properties of nanostructure-arrayed silicon surfaces.” Nanotechnology Vol.11. No.3, 2000, pp 161–164
  • [6] H. Sai, H. Fujii, K. Arafune, Y. Ohshita, M. Yamaguchi, Y. Kanamori, and H. Yugami, “Antireflective subwavelength structures on crystalline Si fabricated using directly formed anodic porous alumina masks.” Appl. Phys. Lett. Vol.88, No.20, 2006, pp 201116
  • [7] S. A. Boden and D. M. Bagnall, “Tunable reflection minima of nanostructured antireflective surfaces.” Appl. Phys. Lett. Vol.93. No. 13, 2008, pp 133108
  • [8] Y.-H. Pai, Y.-C. Lin, J.-L. Tsai, and G.-R. Lin, “Nonlinear dependence between the surface reflectance and the duty-cycle of semiconductor nanorod array.” Opt. Express Vol.19. No. 3, 2011, pp 1680–1690
  • [9] Y.-F. Huang, S. Chattopadhyay, Y.-J. Jen, C.-Y. Peng, T.-A. Liu, Y.-K. Hsu, C.-L. Pan, H.-C. Lo, C.-H. Hsu, Y.-H. Chang, C.-S. Lee, K.-H. Chen, and L.-C. Chen, “Improved broadband and quasi-omnidirectional anti-reflection properties with biomimetic silicon nanostructures.” Nat. Nanotechnol. Vol.2. No.12, 2007, pp 770–774
  • [10] H. Sai, Y. Kanamori, K. Arafune, Y. Ohshita, and M. Yamaguchi, “Light trapping effect of submicron surface textures in crystalline Si solar cells.” Prog. Photovolt. Res. Appl. Vol.15. No.5, 2007, pp 415–423
  • [11] S. A. Boden and D. M. Bagnall, “Optimization of moth-eye antireflection schemes for silicon solar cells.” Prog. Photovolt. Res. Appl. Vol.18. No.3, 2010, pp 195–203
  • [12] H. Sai, H. Fujii, K. Arafune, Y. Ohshita, Y. Kanamori, H. Yugami, and M. Yamaguchi, “Wide-angle antireflection effect of subwavelength structures for solar cells.” Jpn. J. Appl. Phys. Vol. No. 46-6A, 2007, pp 3333–3336
  • [13] P. Seliger, M. Mahvash, C. Wang, and A. F. J. Levi, “Optimization of aperiodic dielectric structures.” J. Appl. Phys. Vol. 100. No.3, 2006, pp 034310–034316
  • [14] D. F. Edwards, “Silicon (Si),” Handbook of Optical Constants of Solids, E.D.Palik, ed. (Academic, Orlando, Fla., (1985). [15] B. L. Sopori and R. A. Pryor, “Design of antireflection coatings for textured silicon solar cells.” Sol. Cells Vol.8. No.3, 1983, pp 249–261
  • [16] D. Shir, J. Yoon, D. Chanda, J.-H. Ryu, and J. A. Rogers, “Performance of ultrathin silicon solar microcells with nanostructures of relief formed by soft imprint lithography for broad band absorption enhancement.” Nano Lett. Vol.10. No.8, 2010, pp 3041–3046
  • [17] H. Park, Y. Dan, K. Seo, Y. J. Yu, P. K. Duane, M. Wober, and K. B. Crozier, “Filter-Free Image Sensor Pixels Comprising Silicon Nanowires with Selective Color Absorption.” Nano Lett. Vol.14. No.4, 2014, pp 1804–1809
  • [18] T. Tut, Y. Dan, P. Duane, Y. Yu, M. Wober,and K. B. Crozier, “Vertical waveguides integrated with silicon photodetectors: Towards high efficiency and low cross-talk image sensors.”, Appl. Phys. Lett. Vol.100., 2012, pp 043504
Year 2022, Volume: 10 Issue: 1, 30 - 34, 30.01.2022
https://doi.org/10.17694/bajece.943854

Abstract

Project Number

project number 219M280

References

  • [1] P. Campbell, M A. Green. "Light trapping properties of pyramidally textured surfaces." J. Appl. Phys. Vol. 62. No.1, 1987, pp 243-249
  • [2] S. Chattopadhyay, Y.F. Huang, Y.J. Jen, A. Ganguly, K.H. Chen, L.C. Chen. "Anti-reflecting and photonic nanostructures." Mater. Sci. Eng. Rep., Vol.69. No.1-3, 2010, pp 1-35
  • [3] P. Lalanne and G. M. Morris, “Antireflection behavior of silicon subwavelength periodic structures for visible light.” Nanotechnology Vol. 8. No.2, 1997, pp 53–56
  • [4] Y. Kanamori, M. Sasaki, and K. Hane, “Broadband antireflection gratings fabricated upon silicon substrates.” Opt. Lett. Vol.24. No.20, 1999, pp 1422–1424
  • [5] K. Hadobás, S. Kirsch, A. Carl, M. Acet, and E. F. Wassermann, “Reflection properties of nanostructure-arrayed silicon surfaces.” Nanotechnology Vol.11. No.3, 2000, pp 161–164
  • [6] H. Sai, H. Fujii, K. Arafune, Y. Ohshita, M. Yamaguchi, Y. Kanamori, and H. Yugami, “Antireflective subwavelength structures on crystalline Si fabricated using directly formed anodic porous alumina masks.” Appl. Phys. Lett. Vol.88, No.20, 2006, pp 201116
  • [7] S. A. Boden and D. M. Bagnall, “Tunable reflection minima of nanostructured antireflective surfaces.” Appl. Phys. Lett. Vol.93. No. 13, 2008, pp 133108
  • [8] Y.-H. Pai, Y.-C. Lin, J.-L. Tsai, and G.-R. Lin, “Nonlinear dependence between the surface reflectance and the duty-cycle of semiconductor nanorod array.” Opt. Express Vol.19. No. 3, 2011, pp 1680–1690
  • [9] Y.-F. Huang, S. Chattopadhyay, Y.-J. Jen, C.-Y. Peng, T.-A. Liu, Y.-K. Hsu, C.-L. Pan, H.-C. Lo, C.-H. Hsu, Y.-H. Chang, C.-S. Lee, K.-H. Chen, and L.-C. Chen, “Improved broadband and quasi-omnidirectional anti-reflection properties with biomimetic silicon nanostructures.” Nat. Nanotechnol. Vol.2. No.12, 2007, pp 770–774
  • [10] H. Sai, Y. Kanamori, K. Arafune, Y. Ohshita, and M. Yamaguchi, “Light trapping effect of submicron surface textures in crystalline Si solar cells.” Prog. Photovolt. Res. Appl. Vol.15. No.5, 2007, pp 415–423
  • [11] S. A. Boden and D. M. Bagnall, “Optimization of moth-eye antireflection schemes for silicon solar cells.” Prog. Photovolt. Res. Appl. Vol.18. No.3, 2010, pp 195–203
  • [12] H. Sai, H. Fujii, K. Arafune, Y. Ohshita, Y. Kanamori, H. Yugami, and M. Yamaguchi, “Wide-angle antireflection effect of subwavelength structures for solar cells.” Jpn. J. Appl. Phys. Vol. No. 46-6A, 2007, pp 3333–3336
  • [13] P. Seliger, M. Mahvash, C. Wang, and A. F. J. Levi, “Optimization of aperiodic dielectric structures.” J. Appl. Phys. Vol. 100. No.3, 2006, pp 034310–034316
  • [14] D. F. Edwards, “Silicon (Si),” Handbook of Optical Constants of Solids, E.D.Palik, ed. (Academic, Orlando, Fla., (1985). [15] B. L. Sopori and R. A. Pryor, “Design of antireflection coatings for textured silicon solar cells.” Sol. Cells Vol.8. No.3, 1983, pp 249–261
  • [16] D. Shir, J. Yoon, D. Chanda, J.-H. Ryu, and J. A. Rogers, “Performance of ultrathin silicon solar microcells with nanostructures of relief formed by soft imprint lithography for broad band absorption enhancement.” Nano Lett. Vol.10. No.8, 2010, pp 3041–3046
  • [17] H. Park, Y. Dan, K. Seo, Y. J. Yu, P. K. Duane, M. Wober, and K. B. Crozier, “Filter-Free Image Sensor Pixels Comprising Silicon Nanowires with Selective Color Absorption.” Nano Lett. Vol.14. No.4, 2014, pp 1804–1809
  • [18] T. Tut, Y. Dan, P. Duane, Y. Yu, M. Wober,and K. B. Crozier, “Vertical waveguides integrated with silicon photodetectors: Towards high efficiency and low cross-talk image sensors.”, Appl. Phys. Lett. Vol.100., 2012, pp 043504
There are 17 citations in total.

Details

Primary Language English
Subjects Electrical Engineering
Journal Section Araştırma Articlessi
Authors

Turgut Tut 0000-0002-4589-201X

Project Number project number 219M280
Publication Date January 30, 2022
Published in Issue Year 2022 Volume: 10 Issue: 1

Cite

APA Tut, T. (2022). Broadband Low Reflection Surfaces with Silicon Nano-pillar Square Arrays for Energy Harvesting. Balkan Journal of Electrical and Computer Engineering, 10(1), 30-34. https://doi.org/10.17694/bajece.943854

All articles published by BAJECE are licensed under the Creative Commons Attribution 4.0 International License. This permits anyone to copy, redistribute, remix, transmit and adapt the work provided the original work and source is appropriately cited.Creative Commons Lisansı