Research Article
BibTex RIS Cite
Year 2022, Volume: 10 Issue: 3, 300 - 306, 30.07.2022
https://doi.org/10.17694/bajece.1090145

Abstract

References

  • [1] Y. Bu ̈rhan and R. Das ̧, “Co-author link prediction from academic databases,” Gazi University, Journal of Polytechnic, vol. 20, no. 4, pp. 787–800, Dec. 2017. [Online]. Available: http://dergipark.gov.tr/ download/article- file/387477
  • [2] L. Yang, E. Cheng, and Z. M. O ̈zsoyog ̆lu, “Efficient path-based computations on pedigree graphs with compact encodings,” BMC Bioinformatics, vol. 13, no. S3, p. S14, Dec. 2012. [Online]. Available: https://bmcbioinformatics.biomedcentral. com/articles/10.1186/1471- 2105- 13- S3- S14
  • [3] Q. Guo, X. Qiu, X. Xue, and Z. Zhang, “Syntax-guided text generation via graph neural network,” Science China Information Sciences, vol. 64, no. 5, p. 152102, May 2021. [Online]. Available: http://link.springer.com/10.1007/s11432-019-2740-1
  • [4] B. Xie, C. Qi, H. Ben, and W. Yu, “The applications of graph theory in electric network,” in 2019 International Conference on Sensing, Diagnostics, Prognostics, and Control (SDPC). Beijing, China: IEEE, Aug. 2019, pp. 780–784. [Online]. Available: https: //ieeexplore.ieee.org/document/9168962/
  • [5] D. P. Sinha, “A pairing between graphs and trees,” arXiv:math/0502547, Oct. 2006, arXiv: math/0502547. [Online]. Available: http://arxiv.org/ abs/math/0502547
  • [6] S. A. M. A. Junid, N. M. Tahir, Z. A. Majid, and M. F. M. Idros, “Potential of graph theory algorithm approach for DNA sequence alignment and comparison,” in 2012 Third International Conference on Intelligent Systems Modelling and Simulation. Kota Kinabalu, Malaysia: IEEE, Feb. 2012, pp. 187–190. [Online]. Available: http://ieeexplore.ieee.org/document/6169697/
  • [7] J. Zhao, Q. Yan, J. Li, M. Shao, Z. He, and B. Li, “TIMiner: Automatically extracting and analyzing categorized cyber threat intelligence from social data,” Computers & Security, vol. 95, p. 101867, Aug. 2020. [Online]. Available: https://linkinghub.elsevier.com/ retrieve/pii/S0167404820301395
  • [8] OASIS, “STIXTM version 2.0. part 3: Cyber observable core concepts.”
  • [9] E. Rossi, B. Chamberlain, F. Frasca, D. Eynard, F. Monti, and M. Bronstein, “Temporal graph networks for deep learning on dynamic graphs,” arXiv:2006.10637 [cs, stat], Oct. 2020, arXiv: 2006.10637. [Online]. Available: http://arxiv.org/abs/2006.10637
  • [10] F. Harary and G. Gupta, “Dynamic graph models,” Mathematical and Computer Modelling, vol. 25, no. 7, pp. 79–87, Apr. 1997. [Online]. Available: https://linkinghub.elsevier.com/retrieve/pii/ S0895717797000502
  • [11] M. Krzywinski, I. Birol, S. J. Jones, and M. A. Marra, “Hive plots– rational approach to visualizing networks,” Briefings in Bioinformatics, vol. 13, no. 5, pp. 627–644, Sep. 2012. [Online]. Available: https://academic.oup.com/bib/article- lookup/doi/10.1093/bib/bbr069
  • [12] R. Das and I. Turkoglu, “Creating meaningful data from web logs for improving the impressiveness of a website by using path analysis method,” Expert Systems with Applications, vol. 36, no. 3, Part 2, pp. 6635–6644, Apr. 2009. [Online]. Available: http://www.sciencedirect.com/science/article/pii/S0957417408005952
  • [13] S. Noel, E. Harley, K. Tam, M. Limiero, and M. Share, “Chapter 4 - cygraph: Graph-based analytics and visualization for cybersecurity,” in Cognitive Computing: Theory and Applications, ser. Handbook of Statistics, V. N. Gudivada, V. V. Raghavan, V. Govindaraju, and C. Rao, Eds. Elsevier, 2016, vol. 35, pp. 117–167. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0169716116300426
  • [14] “Global international migration flows | Wittgenstein Centre.” [Online]. Available: http://download.gsb.bund.de/BIB/global flow/
  • [15] G. Chen, “Information fusion and visualization of cyber-attack graphs,” SPIE Newsroom, 2007. [Online]. Available: http://www.spie.org/x14562. xml
  • [16] M. Alshammari and A. Rezgui, “An all pairs shortest path algorithm for dynamic graphs,” International Journal of Mathematics and Computer Science, p. 20, 2020.
  • [17] J. R. Nascimento, U. S. Souza, and J. L. Szwarcfiter, “Partitioning a graph into complementary subgraphs,” Graphs and Combinatorics, vol. 37, no. 4, pp. 1311–1331, Jul. 2021. [Online]. Available: https://link.springer.com/10.1007/s00373-021-02319-4
  • [18] S. V. Patil and D. B. Kulkarni, “K-way spectral graph partitioning for load balancing in parallel computing,” Bharati Vidyapeeth’s Institute of Computer Applications and Management, Aug. 2021. [Online]. Available: https://link.springer.com/10.1007/s41870-021-00777-w
  • [19] M.Baykara,R.Das ̧,andG.Tuna,“Websunucueris ̧imku ̈tu ̈klerinden web ataklarının tespitine yo ̈nelik web tabanlı log analiz platformu,” Fırat U ̈niversitesi Mu ̈hendislik Bilimleri Dergisi, vol. 28, pp. 291 – 302, 2016.
  • [20] “Visualized SDO relationships,” Sep. 2021. [Online]. Available: https://oasis- open.github.io/cti- documentation/examples/ visualized- sdo- relationships
  • [21] S. Majeed, M. Uzair, U. Qamar, and A. Farooq, “Social Network Analysis Visualization Tools: A Comparative Review,” in 2020 IEEE 23rd International Multitopic Conference (INMIC). Bahawalpur, Pakistan: IEEE, Nov. 2020, pp. 1–6. [Online]. Available: https: //ieeexplore.ieee.org/document/9318162/
  • [22] S. Hussain, L. Muhammad, and A. Yakubu, “Mining social media and DBpedia data using Gephi and R,” Journal of Applied Computer Science & Mathematics, vol. 12, no. 1, pp. 14–20, 2018. [Online]. Available: http://www.jacsm.ro/view/?pid=25 2
  • [23] G. Drakopoulos, A. Baroutiadi, and V. Megalooikonomou, “Higher order graph centrality measures for Neo4j,” in 2015 6th International Confer- ence on Information, Intelligence, Systems and Applications (IISA), Jul. 2015, pp. 1–6.
  • [24] E. Curmi, R. Fenner, K. Richards, J. M. Allwood, B. Bajzˇelj, and G. M. Kopec, “Visualising a stochastic model of californian water resources using sankey diagrams,” Water Resources Management, vol. 27, no. 8, pp. 3035–3050, Jun. 2013. [Online]. Available: http://link.springer.com/10.1007/s11269-013-0331-2

Graph Visualization of Cyber Threat Intelligence Data for Analysis of Cyber Attacks

Year 2022, Volume: 10 Issue: 3, 300 - 306, 30.07.2022
https://doi.org/10.17694/bajece.1090145

Abstract

Threat intelligence enables us to make faster, more informed, data-backed security decisions and change their behavior from reactive to proactive in the fight against threat actors. Cyber threat intelligence sources include open-source intelligence, social media intelligence, human intelligence, technical intelligence, device log files, forensically acquired data or intelligence from the internet traffic, and data derived for the deep and dark web. In this study, graph visualization is discussed for the intelligible and accurate analysis of complex cyber threat intelligence data, including network attacks. The processes of collecting, cleaning, organizing, and visualizing cyber intelligence data in different formats and contents on a single platform are given step by step. Dynamic graphs play an active role in these systems, where the attack locations and targets from different points are constantly variable. Therefore, research on dynamic graph solutions and visualization in the visual analysis of cyberattacks is presented.

References

  • [1] Y. Bu ̈rhan and R. Das ̧, “Co-author link prediction from academic databases,” Gazi University, Journal of Polytechnic, vol. 20, no. 4, pp. 787–800, Dec. 2017. [Online]. Available: http://dergipark.gov.tr/ download/article- file/387477
  • [2] L. Yang, E. Cheng, and Z. M. O ̈zsoyog ̆lu, “Efficient path-based computations on pedigree graphs with compact encodings,” BMC Bioinformatics, vol. 13, no. S3, p. S14, Dec. 2012. [Online]. Available: https://bmcbioinformatics.biomedcentral. com/articles/10.1186/1471- 2105- 13- S3- S14
  • [3] Q. Guo, X. Qiu, X. Xue, and Z. Zhang, “Syntax-guided text generation via graph neural network,” Science China Information Sciences, vol. 64, no. 5, p. 152102, May 2021. [Online]. Available: http://link.springer.com/10.1007/s11432-019-2740-1
  • [4] B. Xie, C. Qi, H. Ben, and W. Yu, “The applications of graph theory in electric network,” in 2019 International Conference on Sensing, Diagnostics, Prognostics, and Control (SDPC). Beijing, China: IEEE, Aug. 2019, pp. 780–784. [Online]. Available: https: //ieeexplore.ieee.org/document/9168962/
  • [5] D. P. Sinha, “A pairing between graphs and trees,” arXiv:math/0502547, Oct. 2006, arXiv: math/0502547. [Online]. Available: http://arxiv.org/ abs/math/0502547
  • [6] S. A. M. A. Junid, N. M. Tahir, Z. A. Majid, and M. F. M. Idros, “Potential of graph theory algorithm approach for DNA sequence alignment and comparison,” in 2012 Third International Conference on Intelligent Systems Modelling and Simulation. Kota Kinabalu, Malaysia: IEEE, Feb. 2012, pp. 187–190. [Online]. Available: http://ieeexplore.ieee.org/document/6169697/
  • [7] J. Zhao, Q. Yan, J. Li, M. Shao, Z. He, and B. Li, “TIMiner: Automatically extracting and analyzing categorized cyber threat intelligence from social data,” Computers & Security, vol. 95, p. 101867, Aug. 2020. [Online]. Available: https://linkinghub.elsevier.com/ retrieve/pii/S0167404820301395
  • [8] OASIS, “STIXTM version 2.0. part 3: Cyber observable core concepts.”
  • [9] E. Rossi, B. Chamberlain, F. Frasca, D. Eynard, F. Monti, and M. Bronstein, “Temporal graph networks for deep learning on dynamic graphs,” arXiv:2006.10637 [cs, stat], Oct. 2020, arXiv: 2006.10637. [Online]. Available: http://arxiv.org/abs/2006.10637
  • [10] F. Harary and G. Gupta, “Dynamic graph models,” Mathematical and Computer Modelling, vol. 25, no. 7, pp. 79–87, Apr. 1997. [Online]. Available: https://linkinghub.elsevier.com/retrieve/pii/ S0895717797000502
  • [11] M. Krzywinski, I. Birol, S. J. Jones, and M. A. Marra, “Hive plots– rational approach to visualizing networks,” Briefings in Bioinformatics, vol. 13, no. 5, pp. 627–644, Sep. 2012. [Online]. Available: https://academic.oup.com/bib/article- lookup/doi/10.1093/bib/bbr069
  • [12] R. Das and I. Turkoglu, “Creating meaningful data from web logs for improving the impressiveness of a website by using path analysis method,” Expert Systems with Applications, vol. 36, no. 3, Part 2, pp. 6635–6644, Apr. 2009. [Online]. Available: http://www.sciencedirect.com/science/article/pii/S0957417408005952
  • [13] S. Noel, E. Harley, K. Tam, M. Limiero, and M. Share, “Chapter 4 - cygraph: Graph-based analytics and visualization for cybersecurity,” in Cognitive Computing: Theory and Applications, ser. Handbook of Statistics, V. N. Gudivada, V. V. Raghavan, V. Govindaraju, and C. Rao, Eds. Elsevier, 2016, vol. 35, pp. 117–167. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0169716116300426
  • [14] “Global international migration flows | Wittgenstein Centre.” [Online]. Available: http://download.gsb.bund.de/BIB/global flow/
  • [15] G. Chen, “Information fusion and visualization of cyber-attack graphs,” SPIE Newsroom, 2007. [Online]. Available: http://www.spie.org/x14562. xml
  • [16] M. Alshammari and A. Rezgui, “An all pairs shortest path algorithm for dynamic graphs,” International Journal of Mathematics and Computer Science, p. 20, 2020.
  • [17] J. R. Nascimento, U. S. Souza, and J. L. Szwarcfiter, “Partitioning a graph into complementary subgraphs,” Graphs and Combinatorics, vol. 37, no. 4, pp. 1311–1331, Jul. 2021. [Online]. Available: https://link.springer.com/10.1007/s00373-021-02319-4
  • [18] S. V. Patil and D. B. Kulkarni, “K-way spectral graph partitioning for load balancing in parallel computing,” Bharati Vidyapeeth’s Institute of Computer Applications and Management, Aug. 2021. [Online]. Available: https://link.springer.com/10.1007/s41870-021-00777-w
  • [19] M.Baykara,R.Das ̧,andG.Tuna,“Websunucueris ̧imku ̈tu ̈klerinden web ataklarının tespitine yo ̈nelik web tabanlı log analiz platformu,” Fırat U ̈niversitesi Mu ̈hendislik Bilimleri Dergisi, vol. 28, pp. 291 – 302, 2016.
  • [20] “Visualized SDO relationships,” Sep. 2021. [Online]. Available: https://oasis- open.github.io/cti- documentation/examples/ visualized- sdo- relationships
  • [21] S. Majeed, M. Uzair, U. Qamar, and A. Farooq, “Social Network Analysis Visualization Tools: A Comparative Review,” in 2020 IEEE 23rd International Multitopic Conference (INMIC). Bahawalpur, Pakistan: IEEE, Nov. 2020, pp. 1–6. [Online]. Available: https: //ieeexplore.ieee.org/document/9318162/
  • [22] S. Hussain, L. Muhammad, and A. Yakubu, “Mining social media and DBpedia data using Gephi and R,” Journal of Applied Computer Science & Mathematics, vol. 12, no. 1, pp. 14–20, 2018. [Online]. Available: http://www.jacsm.ro/view/?pid=25 2
  • [23] G. Drakopoulos, A. Baroutiadi, and V. Megalooikonomou, “Higher order graph centrality measures for Neo4j,” in 2015 6th International Confer- ence on Information, Intelligence, Systems and Applications (IISA), Jul. 2015, pp. 1–6.
  • [24] E. Curmi, R. Fenner, K. Richards, J. M. Allwood, B. Bajzˇelj, and G. M. Kopec, “Visualising a stochastic model of californian water resources using sankey diagrams,” Water Resources Management, vol. 27, no. 8, pp. 3035–3050, Jun. 2013. [Online]. Available: http://link.springer.com/10.1007/s11269-013-0331-2
There are 24 citations in total.

Details

Primary Language English
Subjects Software Testing, Verification and Validation
Journal Section Araştırma Articlessi
Authors

Mücahit Sülü 0000-0002-4114-1390

Resul Daş 0000-0002-6113-4649

Publication Date July 30, 2022
Published in Issue Year 2022 Volume: 10 Issue: 3

Cite

APA Sülü, M., & Daş, R. (2022). Graph Visualization of Cyber Threat Intelligence Data for Analysis of Cyber Attacks. Balkan Journal of Electrical and Computer Engineering, 10(3), 300-306. https://doi.org/10.17694/bajece.1090145

All articles published by BAJECE are licensed under the Creative Commons Attribution 4.0 International License. This permits anyone to copy, redistribute, remix, transmit and adapt the work provided the original work and source is appropriately cited.Creative Commons Lisansı