A Modular Multilevel Converter-Based Pulsed Electric Field Generator Design for Electroporation Applications
Year 2023,
Volume: 11 Issue: 4, 373 - 379, 22.12.2023
Övül Eski
,
Kemal Şahin
,
Sevilay Çetin
Abstract
After a short historical background and mentioning common application areas and different clinical modalities of pulsed electric fields and the phenomena such as electro permeabilization and electroporation are introduced based on the concept of the basic mechanism. Subsequently, pulse generation (PG) and the adapted modular multilevel converter (MMC) topology that is to be covered are introduced including the operating principles and very basic analysis. Finally, performance of the proposed MMC with four half bridge submodules is tested on a prototype built in laboratory. A bidirectional voltage is produced with 80 V amplitude pulsating at 100 kHz operation frequency.
Project Number
2022FEBE004
References
- [1] A. Rolong, R.V. Davalos, B. Rubinsky, "History of electroporation." In Irreversible Electroporation in Clinical Practice, 2018, pp. 13-37. Springer, Cham.
- [2] C. H. Wu, "Electric fish and the discovery of animal electricity: the mystery of the electric fish motivated research into electricity and was instrumental in the emergence of electrophysiology." American Scientist, vol. 72, no:6, 1984, pp. 598-607.
- [3] C. D. McCaig, A.M. Rajnicek, B. Song, M. Zhao, "Controlling cell behavior electrically: current views and future potential." Physiological Reviews, 2005, pp. 943-978.
- [4] F. Carpi, S. Maddio, B. Pelosi, "An unexpected mossotti: His formula at the basis of dielectrophoresis in modern molecular biology." URSI Radio Science Bulletin 2020, no: 373, 2020, pp. 83-85.
- [5] M.L. Yarmush, A. Golberg, G. Serša, T. Kotnik, D. Miklavčič, "Electroporation-based technologies for medicine: principles, applications, and challenges." Annu Rev Biomed Eng., vol. 16, no. 1, 2014, pp.295-320.
- [6] A.A. Aguilar, M.C. Ho, E. Chang, K.W. Carlson, A. Natarajan, T. Marciano, Z. Bomzon, C.B. Patel, "Permeabilizing cell membranes with electric fields." Cancers, vol. 13, no. 9, 2021, 2283.
- [7] X. Li, F. Yang, B. Rubinsky, "A theoretical study on the biophysical mechanisms by which tumor treating fields affect tumor cells during mitosis." IEEE Transactions on Biomedical Engineering, vol. 67, no: 9, 2020, pp. 2594-2602.
- [8] T. Kotnik, L. Rems, M. Tarek, D. Miklavčič, "Membrane electroporation and electropermeabilization: mechanisms and models." Annual review of biophysics, vol. 48, 2019, pp. 63-91.
- [9] M.A. Elgenedy, A.M. Massoud, S. Ahmed, B.W. Williams, R. Jim McDonald, "A modular multilevel voltage-boosting Marx pulse-waveform generator for electroporation applications." IEEE Transactions on Power Electronics, vol. 34, no. 11, 2019, pp. 10575-10589.
- [10] T. Kotnik, P. Kramar, G. Pucihar, D. Miklavcic, M. Tarek, "Cell membrane electroporation-Part 1: The phenomenon." IEEE Electrical Insulation Magazine, vol. 28, no. 5, 2012, pp.14-23.
- [11] K.N. Aycock, R.V. Davalos, "Irreversible electroporation: background, theory, and review of recent developments in clinical oncology." Bioelectricity, vol. 1, no. 4, 2019, pp. 214-234.
- [12] L. Rems, M.A. Kasimova, I. Testa, L. Delemotte, "Pulsed electric fields can create pores in the voltage sensors of voltage-gated ion channels." Biophysical Journal, vol. 119, no. 1, 2020, pp. 190-205.
- [13] E.P.W Jenkins, A. Finch, M. Gerigk, I.F. Triantis, C. Watts, G.G. Malliaras, "Electrotherapies for Glioblastoma." Advanced Science, vol. 8, no. 18, 2021, 2100978.
- [14] D.E. Chafai, F. Vostárek, E. Dráberová, D. Havelka, D. Arnaud‐Cormos, D.P. Leveque, J. Janáček, L. Kubínová, M. Cifra, P. Dráber, "Microtubule cytoskeleton remodeling by nanosecond pulsed electric fields." Advanced Biosystems, vol. 4, no. 7, 2020, 2000070.
- [15] J. Mankowski, M. Kristiansen, "A review of short pulse generator technology." IEEE Transactions on Plasma Science, vol. 28, no. 1, 2000, pp. 102-108.
- [16] S.-Y. Tseng, T.-F. Wu, H-R. Yang, J.-C. Guo, J.-C. Hung "Soft-switching series-resonant converter to generate high output voltage for processing microbes." In Nineteenth Annual IEEE Applied Power Electronics Conference and Exposition APEC'04, vol. 2, 2004, pp. 905-911.
- [17] R. Sundararajan, J. Shao, E. Soundarajan, J. Gonzales, A. Chaney, "Performance of solid-state high-voltage pulsers for biological applications-a preliminary study." IEEE Transactions on Plasma Science, vol. 32, no. 5, 2004, pp. 2017-2025.
- [18] E. Pirc, D. Miklavčič, M. Reberšek, "Nanosecond pulse electroporator with silicon carbide MOSFET s: Development and evaluation." IEEE Transactions on Biomedical Engineering, vol. 66, no. 12, 2019, pp. 3526-3533.
- [19] H. Sarnago, J.M. Burdio, T. Garcia-Sanchez, L.M. Mir, I. Alvarez-Gariburo, O. Lucia. "GaN-Based versatile waveform generator for biomedical applications of electroporation." IEEE Access, vol. 8, 2020, pp. 97196-97203.
- [20] O. Eski, S. Cetin, "Modular pulsed electric field generator based on modular multilevel converter topology with four half bridge submodules to experience biological loads", IEEE International Conference on Power Electronics and Motion Control, pp. 1-6, Brasov/Romania, 2022.
Year 2023,
Volume: 11 Issue: 4, 373 - 379, 22.12.2023
Övül Eski
,
Kemal Şahin
,
Sevilay Çetin
Supporting Institution
Pamukkale Üniversitesi
Project Number
2022FEBE004
References
- [1] A. Rolong, R.V. Davalos, B. Rubinsky, "History of electroporation." In Irreversible Electroporation in Clinical Practice, 2018, pp. 13-37. Springer, Cham.
- [2] C. H. Wu, "Electric fish and the discovery of animal electricity: the mystery of the electric fish motivated research into electricity and was instrumental in the emergence of electrophysiology." American Scientist, vol. 72, no:6, 1984, pp. 598-607.
- [3] C. D. McCaig, A.M. Rajnicek, B. Song, M. Zhao, "Controlling cell behavior electrically: current views and future potential." Physiological Reviews, 2005, pp. 943-978.
- [4] F. Carpi, S. Maddio, B. Pelosi, "An unexpected mossotti: His formula at the basis of dielectrophoresis in modern molecular biology." URSI Radio Science Bulletin 2020, no: 373, 2020, pp. 83-85.
- [5] M.L. Yarmush, A. Golberg, G. Serša, T. Kotnik, D. Miklavčič, "Electroporation-based technologies for medicine: principles, applications, and challenges." Annu Rev Biomed Eng., vol. 16, no. 1, 2014, pp.295-320.
- [6] A.A. Aguilar, M.C. Ho, E. Chang, K.W. Carlson, A. Natarajan, T. Marciano, Z. Bomzon, C.B. Patel, "Permeabilizing cell membranes with electric fields." Cancers, vol. 13, no. 9, 2021, 2283.
- [7] X. Li, F. Yang, B. Rubinsky, "A theoretical study on the biophysical mechanisms by which tumor treating fields affect tumor cells during mitosis." IEEE Transactions on Biomedical Engineering, vol. 67, no: 9, 2020, pp. 2594-2602.
- [8] T. Kotnik, L. Rems, M. Tarek, D. Miklavčič, "Membrane electroporation and electropermeabilization: mechanisms and models." Annual review of biophysics, vol. 48, 2019, pp. 63-91.
- [9] M.A. Elgenedy, A.M. Massoud, S. Ahmed, B.W. Williams, R. Jim McDonald, "A modular multilevel voltage-boosting Marx pulse-waveform generator for electroporation applications." IEEE Transactions on Power Electronics, vol. 34, no. 11, 2019, pp. 10575-10589.
- [10] T. Kotnik, P. Kramar, G. Pucihar, D. Miklavcic, M. Tarek, "Cell membrane electroporation-Part 1: The phenomenon." IEEE Electrical Insulation Magazine, vol. 28, no. 5, 2012, pp.14-23.
- [11] K.N. Aycock, R.V. Davalos, "Irreversible electroporation: background, theory, and review of recent developments in clinical oncology." Bioelectricity, vol. 1, no. 4, 2019, pp. 214-234.
- [12] L. Rems, M.A. Kasimova, I. Testa, L. Delemotte, "Pulsed electric fields can create pores in the voltage sensors of voltage-gated ion channels." Biophysical Journal, vol. 119, no. 1, 2020, pp. 190-205.
- [13] E.P.W Jenkins, A. Finch, M. Gerigk, I.F. Triantis, C. Watts, G.G. Malliaras, "Electrotherapies for Glioblastoma." Advanced Science, vol. 8, no. 18, 2021, 2100978.
- [14] D.E. Chafai, F. Vostárek, E. Dráberová, D. Havelka, D. Arnaud‐Cormos, D.P. Leveque, J. Janáček, L. Kubínová, M. Cifra, P. Dráber, "Microtubule cytoskeleton remodeling by nanosecond pulsed electric fields." Advanced Biosystems, vol. 4, no. 7, 2020, 2000070.
- [15] J. Mankowski, M. Kristiansen, "A review of short pulse generator technology." IEEE Transactions on Plasma Science, vol. 28, no. 1, 2000, pp. 102-108.
- [16] S.-Y. Tseng, T.-F. Wu, H-R. Yang, J.-C. Guo, J.-C. Hung "Soft-switching series-resonant converter to generate high output voltage for processing microbes." In Nineteenth Annual IEEE Applied Power Electronics Conference and Exposition APEC'04, vol. 2, 2004, pp. 905-911.
- [17] R. Sundararajan, J. Shao, E. Soundarajan, J. Gonzales, A. Chaney, "Performance of solid-state high-voltage pulsers for biological applications-a preliminary study." IEEE Transactions on Plasma Science, vol. 32, no. 5, 2004, pp. 2017-2025.
- [18] E. Pirc, D. Miklavčič, M. Reberšek, "Nanosecond pulse electroporator with silicon carbide MOSFET s: Development and evaluation." IEEE Transactions on Biomedical Engineering, vol. 66, no. 12, 2019, pp. 3526-3533.
- [19] H. Sarnago, J.M. Burdio, T. Garcia-Sanchez, L.M. Mir, I. Alvarez-Gariburo, O. Lucia. "GaN-Based versatile waveform generator for biomedical applications of electroporation." IEEE Access, vol. 8, 2020, pp. 97196-97203.
- [20] O. Eski, S. Cetin, "Modular pulsed electric field generator based on modular multilevel converter topology with four half bridge submodules to experience biological loads", IEEE International Conference on Power Electronics and Motion Control, pp. 1-6, Brasov/Romania, 2022.